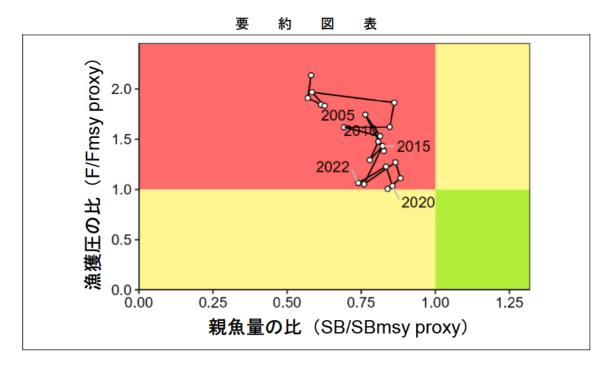
令和5(2023)年度トラフグ日本海・東シナ海・瀬戸内海系群の 資源評価

水産研究・教育機構

水産資源研究所 水産資源研究センター (平井慈恵・片町太輔・真鍋明弘)


参画機関:秋田県水産振興センター、山形県水産研究所、石川県水産総合センター、福井県水産試験場、京都府農林水産技術センター海洋センター、兵庫県立農林水産技術総合センター水産技術センター、鳥取県水産試験場鳥取県栽培漁業センター、島根県水産技術センター、山口県水産研究センター、福岡県水産海洋技術センター、佐賀県玄海水産振興センター、長崎県総合水産試験場、熊本県水産研究センター、鹿児島県水産技術開発センター、宮崎県水産試験場、大分県農林水産研究指導センター水産研究部、愛媛県農林水産研究所水産研究センター栽培資源研究所、広島県立総合技術研究所広島海洋センター、岡山県農林水産総合センター水産研究所、香川県水産試験場、徳島県立農林水産総合技術センター水産研究課、和歌山県水産試験場、全国豊かな海づくり推進協会

要約

本系群の資源量について、1 歳魚加重 CPUE を資源量指標値としたチューニング VPA により計算した。漁獲量は 2002 年漁期の 364 トンを最高に減少傾向が続き、2022 年漁期は 134 トン(概数値)であった。資源量は 2006 年漁期の 1,174 トンから減少傾向で、2022 年漁期は 678 トンであった。2022 年漁期の親魚量は 427 トンであった。本種は栽培対象種であり、2022 年漁期は 140.2 万尾(速報値)の人工種苗が放流され、2022 年漁期の放流魚の混入率は 55.3%、添加効率は 0.032 と推定された。

本系群では、令和 4 年 12 月に開催された研究機関会議での再生産関係に関する議論に基づき、生物学的管理基準値に基づく 1B ルールの管理規則を適用する。将来予測には資源評価により推定された 2002~2020 年漁期の加入量を用い、Fmsy の代替値としてF30%SPRを適用し算出される SBmsy proxy (577トン)を目標管理基準値とする。限界管理基準値として SBmin (329トン)を、禁漁水準として 0トンとする。目標管理基準値案を達成する漁獲圧 (Fmsy proxy) は、現状 (2018~2020 年漁期の平均の漁獲係数)の 0.91 倍である。なお、直近年 (2022 年漁期)の親魚量は 427トンであり、目標管理基準値を下回り、限界管理基準値よりは高い。直近年の漁獲圧は全年齢平均で 0.23 であり、MSY を実現する水準の漁獲圧の代替値 (Fmsy proxy)を上回り、現状と同等である。直近 5 年間の親魚量は 2018 年漁期の 509トンから 2022 年漁期の 427トンと約 16%減であり、3 歳以上の親魚資源尾数においても 2022 年漁期は 2018 年漁期の 23%減であり、親魚量の推移は「減少」と判断される。

本系群では、管理基準値や将来予測など、資源管理方針に関する検討会の議論をふまえて作成される項目については管理基準値等に関する研究機関会議において提案された値を暫定的に示した。

MSY の代替値、親魚量の水準と動向、および ABC						
MSY を実現する水準の親魚量(代替値)	577トン					
2022 年漁期の親魚量の水準	MSY を実現する水準の代替値を下回る					
2022 年漁期の漁獲圧の水準	MSY を実現する水準の代替値を上回る					
2022年の親魚量の動向	減少					
最大持続生産量(MSY)の代替値	191トン					

近年の資源量、漁獲量、漁獲圧、および漁獲割合								
年	資源量 (トン)	親魚量 (トン)	漁獲量 (トン)	F/Fmsy proxy	漁獲割合 (%)			
2018	926	509	190	1.14	20			
2019	877	484	166	1.02	19			
2020	862	494	158	1.03	18			
2021	788	481	187	1.24	24			
2022	678	427	134	1.06	20			

資源評価対象期間を通じた漁獲量の推移は図1参照。

1. データセット

本件資源評価に使用したデータセットは以下のとおり

	++ + + + + + + + + + + + + + + + + + +
データセット	基礎情報、関係調査等
年齢別・漁期年別	府県別漁獲量(参画 22 府県、(株)大水、(株)下関唐戸魚市場)
漁獲尾数	全長組成(水研、秋田県、山形県、石川県、福井県、京都府、鳥取県、
	山口県、福岡県、佐賀県、長崎県、熊本県、大分県、愛媛県、広島県、
	岡山県、兵庫県、香川県)
	全長一体重関係、年齢一全長関係、全長階級別雌雄割合(生物情報
	等収集調査:秋田県、山口県、福岡県、熊本県、大分県、愛媛県、岡山
	県、香川県、上田ほか(2010)、広島大学、資源量推定等高精度化推
	進事業・水研、資源管理型沖合漁業推進総合調査(1999~2003、海水
	資開発セ(現水産機構・開発セ))
資源量指数	*九州・山口北西海域とらふぐはえ縄漁業漁獲成績報告書(水産庁)
	下関唐戸魚市場取扱量(下関唐戸魚市場(株)、山口県)
	山口県瀬戸内海側のはえ縄漁業の CPUE (中国四国農政局)
	備後灘の定置網漁業の CPUE (標本漁協)
	伊予灘・豊後水道のはえ縄漁業の CPUE (標本漁協)
	*豊後水道のはえ縄漁業、釣り漁業の漁協取扱量
	備讃瀬戸の袋待網漁業の CPUE (標本漁協)
	関門海峡の釣り漁業における市場取扱量
自然死亡係数(M)	年当たり M=0.25 (田中 1960)
漁獲努力量	*九州・山口北西海域とらふぐはえ縄漁業漁獲成績報告書(水産庁)
	山口県瀬戸内海側のはえ縄漁業の努力量(中国四国農政局)
	備後灘の定置網漁業の努力量(標本漁協)
	伊予灘・豊後水道のはえ縄漁業の努力量(標本漁協)
	*豊後水道のはえ縄漁業、釣り漁業の漁協取扱量
	備讃瀬戸の袋待網漁業の努力量(標本漁協)
	関門海峡の釣り漁業における市場取扱量
人工種苗放流尾	人工種苗放流尾数(令和 3 年度「栽培漁業用種苗等の生産・入手・放
数、標識放流魚漁	流実績」(水産庁、水産研究・教育機構、全国豊かな海づくり推進協会)
獲尾数等	(1973~2021))、令和4年度トラフグ全国協議会資料(2022)
	0歳の放流効果調査(長崎県、山口県、平成 18 年度栽培漁業資源回
	復等対策事業報告書(2007)、種苗放流による資源造成支援事業(広
	域種資源造成支援事業)(平成 23~25 年度)中間報告書(2014))、生
	物情報等収集調査(山口県、福岡県、佐賀県、長崎県、熊本県、大分
	県、愛媛県、広島県、岡山県)

^{*}はコホート解析におけるチューニング指数である。

本系群の漁期は4月~翌年3月であり、年齢の起算日は4月1日としている。

2. 生態

(1) 分布・回遊

本系群は日本海、東シナ海、黄海、瀬戸内海に分布する (図 2-1)。春に発生した仔稚魚は産卵場周辺を成育場とし、成長に伴って広域に移動する (日高ほか 1988、田北・Intong 1991)。日本海沿岸や九州北西岸の発生群は日本海、東シナ海、黄海へ移動し、瀬戸内海

沿岸の発生群は豊後水道以南、紀伊水道以南、日本海、東シナ海、黄海へ移動する(佐藤 ほか 1996)。

(2) 年齢·成長

本系群の寿命は 10 年以上と推定され、雌雄いずれも最大で全長 60 cm 以上となる大型種である(尾串 1987、岩政 1988)。雌雄で成長が異なり、雌の方が成長が早い。 年齢と全長の関係は、上田ほか(2010)が von Bertalanffy 成長式により

雄: $Lt = 534.3(1 - e^{-0.648(t+0.130)})$ 雌: $Lt = 559.8(1 - e^{-0.598(t+0.144)})$ (t:年齢、 L_t :全長(mm))

と報告している。しかし、この式では成長曲線が 60 cm 程度で収束するのに対し、実際には全長 60 cm 以上に達する個体が存在するため、令和 3 年度評価より、全長組成を年齢に分解する方法を見直し、

雄: $L_t = 117.04 \times \ln(t) + 315.89$ 雌: $L_t = 127.50 \times \ln(t) + 315.31$

を採用した。

また、全長―体重関係については、松村(2006)が、

雄: $W = 3.95 \times 10^{-5} L^{2.82}$ 雌: $W = 5.30 \times 10^{-5} L^{2.74}$

(W: 体重 (kg)、L: 全長 (cm))

と報告しており、令和2年度評価までは、この式を用いていたが、これらは人工種苗放流 魚の再捕個体から得た関係式であることから、天然・人工種苗の区別のない漁獲物全体の 全長組成の年齢分解に利用できるよう、令和3年度評価より以下の式を使用することとし ている(平井ほか2022b、補足資料5)。

令和3年度評価、改訂後の全長-体重関係式

雄: $W = 2.20 \times 10^{-5} \times L^{2.98}$ 雌: $W = 1.97 \times 10^{-5} \times L^{3.02}$

なお令和 4 年度評価では、上記の全長組成に雄 2,318 個体、雌 2,787 個体の全長、体重 データを追加し、以下の式を使用することとした(平井ほか 2023、補足資料 5)。

令和4年度評価、改訂後の全長-体重関係式

雄: $W = 2.15 \times 10^{-5} \times L^{2.99}$

雌: $W = 1.98 \times 10^{-5} \times L^{3.02}$

本年度評価においては、年齢-全長式については、令和3年度評価より用いている式を、全長-体重式については、令和4年度評価より用いている式を用いた。年齢と全長、年齢と体重の関係について、最も漁獲の多い12月~翌3月のうち、年齢分解に使用した期間の中間日である2月1日時点として、年齢ごとの過去5年平均値(2018~2022年漁期)を図2-2に示した。

(3) 成熟·産卵

雄は 2 歳、雌は 3 歳から成熟する(図 2-3、岩政 1988)。なお、これまでの産卵親魚調査から、産卵来遊したこれらの年齢の個体は成熟していることから、成熟率については従来通り、雄は 2 歳時点、雌は 3 歳時点で成熟率 100%として扱う(図 2-3)。本系群の主な産卵場は八郎潟周辺、七尾湾、若狭湾、福岡湾、有明海、八代海、関門海峡周辺、布刈瀬戸、備讃瀬戸とされ、朝鮮半島沿岸、中国沿岸にも存在するとされる(図 2-1、Kusakabe et al. 1962、日高ほか 1988、鈴木 2001、Katamachi et al. 2015)。産卵は 3 月下旬に九州南部から始まり、水温の上昇とともに北上し、瀬戸内海での産卵期は 4~5 月とされ、若狭湾、七尾湾では 4~6 月とされる(藤田 1962、伊藤・多部田 2000)。

(4) 被捕食関係

仔魚後期までは動物性プランクトン、稚魚は底生性の小型甲殻類、未成魚はイワシ類 やその他の幼魚、エビ・カニ類、成魚は魚類、エビ・カニ類を捕食する(松浦 1997)。

3. 漁業の状況

(1) 漁業の概要

産卵場と特定もしくは推定されている八郎潟周辺、七尾湾、若狭湾、福岡湾、有明海、八代海、関門海峡周辺、布刈瀬戸、備讃瀬戸では、3~6 月に 2 歳以上の成熟個体が定置網、釣、その他の網によって漁獲され、7月~翌年1月に0歳が定置網、小型底びき網、釣、はえ縄によって漁獲される。日本海、東シナ海、豊後水道、紀伊水道では、12月~翌年3月に0歳以上がはえ縄によって漁獲される(伊藤・多部田2000)。2022年漁期(2022年4月~2023年3月)の本系群の漁獲量は134トン(概数値)である(図1)。

また、九州・山口北西海域での漁獲量は本系群全体の漁獲量の約半数を占め(2022 年漁期の場合、65.4 トン、49%)、はえ縄により9月〜翌年3月に主に0歳以上が漁獲される。瀬戸内海全体の漁獲量は本系群全体の漁獲量の約2割を占める(2022 年漁期:32.5 トン、24%)。このうち、瀬戸内海西部(伊予灘以西)の漁獲量は瀬戸内海全体の漁獲量の約7割を占め(2022 年漁期:24 トン、68%)、はえ縄等により周年0歳以上が漁獲される。瀬戸内海中央部(燧灘以東)の漁獲量は瀬戸内海全体の漁獲量の約2~3割を占め(2022 年漁期:8.8 トン、27%)、定置網や敷網の一つである袋待網等によって4~6月に2歳以上の成熟個体と未成熟な1歳が漁獲され、定置網によって8~12月に0歳が漁獲される。

本種を主な漁獲対象とする日本海、東シナ海におけるはえ縄の操業は 1965 年以前には

日本の沿岸域に限られていたが、1965年の日韓漁業協定以後、東シナ海、黄海へと漁場が拡大した。1977年以降は北朝鮮の200カイリ宣言によって北緯38度以北の海域に出漁ができなくなり、北緯38度以南の黄海、東シナ海、対馬海峡から山陰に至る海域が主漁場となった。新日韓漁業協定(1999年)、新日中漁業協定(2000年)以降は我が国EEZ内が主漁場となっている。

(2) 漁獲量の推移

本系群は各府県の調査で得られた 2002 年漁期以降の漁獲統計を把握している一方で、2002 年漁期以前の長期間にわたる漁獲統計は存在せず、下関唐戸魚市場(株)における取扱量などが漁獲動向の参考となる。下関唐戸魚市場(株)では 1971 年漁期から日本海、東シナ海産を外海産、瀬戸内海産を内海産として区別して取扱い、統計を整備している。なお、2005 年漁期から本取扱量は、三重県、愛知県、静岡県産も内海産に含まれる漁期年がある。取扱量は 1971~1993 年漁期に 490~1,891 トンで推移後、1994 年漁期から急激に減少し、1996 年漁期以降 109~336 トンと低水準で推移していたが、2019 年漁期、2020年漁期にそれぞれ 90 トン、91 トンと 100 トン未満に落ち込んだ。2021 年漁期は 120 トンと増加したが、2022 年漁期は 76 トンと過去最小であった。なお 2022 年漁期は内海産が前年漁期の 11 トンから 14 トンにやや増加した(前年比+24%)のに対して、外海産は 109 トンから 62 トンに減少している(前年比-57%、図 3-1、表 3-1)。

本系群の 2002 年漁期以降の漁獲量は 2002 年漁期の 364 トンから減少傾向で 2020 年漁期に 158 トンと過去最小となり、2021 年漁期に 187 トンと増加したものの、2022 年漁期は概数値で 134 トンとなり、過去最小を更新している(図 1、表 3-2)。海域ごとの漁獲量を図 3-2、図 3-3 に示す。漁獲の動向は瀬戸内海全体が 33 トン(前年比-9%、全体の24%)、日本海北部が9トン(前年比+12%、全体の7%)、日本海中西部・東シナ海が77トン(前年比-42%、全体の58%)、有明海が13トン(前年比+12%、全体の9%)となった(図 3-2)。有明海は、当歳魚が前年比で-61%であり、親魚では+24%であった。瀬戸内海の各海域では、燧灘以東が9トン(前年比-16%)、伊予灘以西豊予海峡以北が9トン(前年比-1%)、伊予灘以西豊予海峡以南が14トン(前年比-16%)であった(図 3-3)。また、関門海峡(4~7月)が2トン(前年比-10%、系群全体の2%)であった(図 3-3)。

(3) 漁獲努力量

九州・山口北西海域におけるふぐはえ縄漁業の漁獲努力量として九州・山口北西海域トラフグ資源回復計画、トラフグ広域資源管理方針に基づいて報告された関係 6 県(福岡県、広島県、熊本県、長崎県、佐賀県、山口県)の隻数、延べ稼働日数、総針数、操業あたり平均使用針数を集計した。隻数は 2005 年漁期の 240 隻から減少を続けており、2022年漁期は 98 隻と過去最小となった。延べ稼働日数も 2005 年漁期の 5,865 日から減少が続き、2020年漁期に 2,444 隻と当初の半数以下まで低下した後、2,000 日台が続いており、2022年漁期は 2,241 日と過去最小であった。総針数は資源回復計画が開始された 2005 年漁期の 1,800 万針から 2009 年漁期の 1,100 万針に減少後、横ばいで推移し、2015 年漁期の 1,300 万針からは減少し、2020 年漁期以後、700 万針を切っており、2022 年漁期は 653 万針(前年比-2.7%)であり、最盛期(2006 年漁期の 1,806 万針)の 36%まで落ち込んでい

る。この間の平均使用針数は、単純平均では 2005~2019 年漁期までは 2,995~3,371 針と 3,000 針前後を横ばいで推移したが、2020 年漁期以降は 2,774~2,870 針とやや減少した。 一方、主要な操業船に加重するため、船ごとの平均使用針数を各船の使用針数で加重した場合、2010 年漁期以前は 3,733~4,669 針と 4,000 針前後を推移していたが、2011 年漁期以降は 3,215~3,862 針と減少傾向にあり、2022 年漁期は 3,289 針であり、最盛期(2010 年漁期の 4,669 針)の 70%まで落ち込んでいる。 隻数や総針数の減少から鑑みると、2005 年漁期以降の総針数の減少の多くは、休船、廃船による影響が大きいことがうかがえる(図 3-4、表 3-3)。

伊予灘、豊後水道における標本漁協のはえ縄漁業の月ごとの出漁隻数が 2005 年漁期 (7月~翌年3月) 以降集計されている。これを一年間の延べ稼働隻数として集計したところ、延べ稼働隻数は 2005 年漁期の 680 隻から 2014 年漁期の 157 隻まで減少傾向であったが、2015 年漁期に 307 隻に増加した後は 2018 年漁期まで横ばいであった。2019 年漁期は 168 隻に減少した後、2020 年漁期は 220 隻、2021 年漁期は 189 隻と増減し、2022 年漁期は 204 隻 (前年比+8%) であった (図 3-6、表 3-3)。

瀬戸内海中央部の備讃瀬戸における標本漁協の1歳以上(1 kg 以上)を対象とした袋待網の出漁隻・日数は2002年漁期の698隻・日から2016年漁期の318隻・日まで減少した後、増加し、2018年漁期は436隻・日であった。その後、2019年漁期は標本漁協の一つの出漁隻数が不明であったため、以降は1標本漁協のみ集計し、193隻・日であった。その後、2020年漁期は220隻・日、2021年漁期は281隻・日(前年比+28%)、2022年漁期は233隻・日(前年比-17%)と延べ200隻台で増減している(図3-7、表3-3)。

瀬戸内海中央部の備後灘における標本漁協の1歳以上を対象とした定置網の稼働統数は1976年漁期の58統から1997年漁期の84統まで増加傾向であったが、その後は減少傾向となり2022年漁期では前年に続き、19統であった(図3-8、表3-3)。

伊予灘以西・豊予海峡以北のはえ縄における延べ取扱隻数は、2007年漁期の834隻・日から2009年漁期に1,025隻・日と最多となった後、減少し、2014年漁期には287隻・日、2018年漁期には141隻・日と200隻・日未満まで減少し、2021年漁期に112隻・日、2022年漁期に109隻・日と2年連続で過去最小を更新した(図3-9A、表3-3)。伊予灘以西・豊予海峡以南の釣りでは、2007年漁期の2,300隻・日から、2009年漁期の2,909隻・日まで増加した後、2011年漁期に2,148隻・日と2,000隻・日を超えたほかは1,000隻・日以上が2020年漁期まで続いてきたが、2021年漁期は995隻・日と初めて1,000隻・日を下回った。2022年漁期は1,002隻・日であった(図3-10A、表3-3)。

関門海峡における釣りの市場取扱量から抽出した 2014 年漁期~2022 年漁期の延べ取扱 隻数は 2014 年漁期の 113 隻・日から 2019 年漁期の 373 隻・日まで増加した後、2020 年漁 期以降は 200 隻・日台まで減少し、2022 年漁期は 213 隻・日であった(図 3-11)。

過去の漁獲努力量に関する集計例として、中国四国農政局統計部の昭和 56 年~平成 18 年山口農林水産統計年報によれば、瀬戸内海西部の山口県瀬戸内海側におけるふぐ類を対象としたはえ縄漁業の出漁隻・日数は、1995~2006 年のふぐ類漁獲量に占めるトラフグの割合が61~99%であったことから、この海域のはえ縄漁業は主にトラフグを漁獲対象としていたと考えられる。漁獲努力量として当該海域の出漁隻・日数を使用した結果、出漁日数は 1991 年に最大(15,170 隻・日)となった後は減少傾向で、2006 年は 5,571 隻・日

であった(図 3-12、表 3-3)。また、備後灘における標本漁協の 0 歳を対象とした定置網の稼働統数については 1983 年漁期から 2016 年漁期までの集計があり、 $1983\sim1998$ 年漁期は $66\sim78$ 統の間で横ばいで推移したが、1999 年漁期以降は減少傾向で集計最終年漁期の 2016 年漁期は 15 統であった(図 3-13、表 3-3)。

4. 資源の状況

(1) 資源評価の方法

本系群の資源量は日本海、東シナ海、瀬戸内海における 0~3 歳と 4 歳以上をプラスグループとした 2002~2021 年漁期の年齢別漁獲尾数を用い、1 歳魚加重 CPUE を資源漁指標値としたチューニングコホート解析(平松 2001)により推定した(補足資料 2)。自然死亡係数(M)は最高年齢を 10 歳として、田内・田中の方法(田中 1960)により求めた0.25 を用いた。なお、0歳については7月からの漁獲加入を想定し、M=0.1875 を用いた。年齢の起算日は4月1日とした。

(2) 資源量指標値の推移

本年度評価においては、資源量指標値は総努力量を元に集計した単位努力量あたりの 漁獲量を単純 CPUE とし、船別に集計可能である指標については船別 CPUE を算出し、各 船の漁獲尾数または漁獲量で加重平均したものを加重 CPUE として扱った。

九州・山口北西海域における 0 歳以上を主対象としたはえ縄について、総針数の集計に基づく単位努力量当たりの漁獲量(kg/千針、単純 CPUE)は、2005 年漁期の 5 kg/千針から上昇傾向で 2017 年漁期に 10 kg/千針に達した後、2019 年にかけて 7 kg/千針まで低下したが、2020 年漁期は 11 kg/千針、2021 年漁期は 15 kg/千針となり、記録開始以降、単純CPUE は記録を開始した 2005 年漁期と比べて 2.9 倍に達したが、2022 年漁期は 9 kg/千針(前年比-37%)と減少した(図 3-5A、表 3-3)。漁獲尾数あたりでは、2021 年漁期の 7 尾/千針から、5 尾/千針(前年比-38%)まで減少した(図 3-5B)。一方、船別集計に基づき、各船の CPUE を漁獲尾数で加重して CPUE を算定したところ(尾数単位での加重 CPUE)、針数あたりで 2022 年漁期の CPUE は 5.82 尾/千針(前年比-38%、図 3-5C)、18 尾/隻・日(前年比-43%、図 3-5D)と 2021 年漁期と比べて大きく減少し、2009 年漁期以降では、いずれも最小となった。

伊予灘、豊後水道における標本漁協の0歳以上を対象としたはえ縄のCPUE(kg/延べ稼働隻数、単純CPUE)は2006年漁期の10kg/延べ稼働隻数から減少傾向で2018年漁期は4kg/延べ稼働隻数まで減少したが、2020年漁期に11kg/延べ稼働隻数まで増加した後やや減少し、2022年漁期は8kg/延べ稼働隻数(前年比+7%)となった(図3-6、表3-3)。

備讃瀬戸における標本漁協の 1 歳以上 (1kg 以上) を対象とした袋待網の単純 CPUE (kg/隻・日) は 1999 年漁期の 19 kg/隻・日から 2008 年漁期の 69 kg/隻・日に増加後は減少傾向で 2019 年漁期は 10 kg/隻・日まで低下したが、2020 年漁期以降はやや増加しており、2022 年漁期は 13 kg/隻・日 (前年比+4%、2019 年漁期に対して+23%) であった (図3-7、表 3-3)。

備後灘における標本漁協の 1 歳以上を対象とした定置網の単純 CPUE (4~6 月、kg/稼働統数) は 1976 年漁期の 51 kg/稼働統数から 1987 年漁期の 413 kg/稼働統数に上昇した後

に 1990 年漁期の 91 kg/稼働統数まで急激に低下し、1990 年漁期以降も減少傾向で 2022 年漁期は 2 kg/稼働統数であった(図 3-8、表 3-3)。

伊予灘以西・豊予海峡以北のはえ縄における漁協取扱量に対する単純 CPUE(8~翌年3月、kg/隻・日)は、2007年漁期の9.9 kg/隻/日から2009年漁期の10.8 kg/隻・日まで増加した後、2012年漁期の6.0 kg/隻・日まで減少し、その後は2015年漁期の14.5 kg/隻・日まで増加して以降は2016年漁期から2020年漁期まで10.1~12.6 kg/隻・日と横ばいであったが、2021年漁期は9.2 kg/隻・日と低下した後、2022年漁期は9.5 kg/隻・日(前年比+3%)であった。一方、船別 CPUEと船別取扱量に基づく加重 CPUEは2007年の24.2 kg/隻・日が最高値であり、以後、2012年漁期の7.9 kg/隻・日まで減少した後は、2015年漁期の18.3 kg/隻・日まで増加し、2020年漁期まで12.0~14.2 kg/隻・日と横ばいが続いた後、2021年漁期は11.7 kg/隻・日となり、2022年漁期は11.8 kg/隻・日(前年比+1%)であった(図3-9B)。

伊予灘以西・豊予海峡以南における釣りの漁協取扱量に対する単純 CPUE (8月~翌年3月、kg/隻・日)は、2007年漁期の 3.0 kg/隻・日以降、2008~2013年漁期まで 2.3~2.8 kg/隻・日と横ばいであったが、2015~2019年漁期にかけては 2.7~2.9 kg/隻・日と横ばいではあるものの、相対的には増加傾向となった。その後、2021年漁期に 3.4 kg/隻・日と最も高い値を示した後、2022年漁期は 2.9 kg/隻・日(前年比-16%)となっている。一方、船別 CPUE に基づく加重 CPUE は 2007年に 3.9 kg/隻・日であった後、2008年漁期に 2.3 kg/隻・日と集計期間で最も低い値を示したが、以後は緩やかな増加を示し、2021年漁期は 3.8 kg/隻・日となったが、2022年漁期は 3.0 kg/隻・日(前年比-22%)となっている(図 3-10B)。

関門海峡の釣り漁業における市場取扱量に基づく単純 CPUE は、集計を開始した 2014 年漁期から 2017 年漁期にかけて 25 kg/隻・日から 13.8 kg/隻・日まで落ち込んだ後、2019 年漁期の 16.3 kg/隻・日までやや増加したが、2020 年漁期、2021 年漁期はそれぞれ 9.7 kg/隻・日、9.8 kg/隻・日まで減少し、2022 年漁期は 11.2 kg/隻・日であった(図 3-11A)。尾数単位でも、2014 年漁期の 13 尾/隻・日から 2016 年漁期の 8 尾/隻・日まで減少した後、2018 年漁期に 10 尾/隻・日まで増加したものの、以降減少し、2020 年漁期に過去最小の 5 尾/隻・日を経て、2022 年漁期は 6 尾/隻・日であった(図 3-11B)。各船の CPUE を取扱回数で加重した加重 CPUE では、2014 年漁期~2015 年漁期にかけて、40.8~42.7 kg/隻・日、20~21 尾/隻・日、2016 年漁期~2019 年漁期にかけて 20.1~23.1 kg/隻・日、11~13 尾/隻・日、2020 年漁期~2022 年漁期にかけて、12.6~13.8 kg/隻・日、7~7 尾/隻・日、と一律減少が続いている(図 3-11C、11D)。単純 CPUEにおける 2018 年漁期、2019 年漁期は、漁獲盛期に出漁船がスポット的に集中したものと考えられ、この間の年トレンドは加重 CPUE が示すように減少と考えられる。

山口県瀬戸内海側における0歳以上のふぐ類を対象としたはえ縄のCPUE (kg/出漁隻・日) は1981年の19 kg/出漁隻・日から1984年の49 kg/出漁隻・日に上昇した後に大きく低下し、1990年に7 kg/出漁隻・日となり、2006年の8 kg/出漁隻・日まで低位で推移し(図 3-12、表 3-3)、下関唐戸魚市場(株)の内海産の取扱量の推移と概ね一致した(図 3-1、表 3-1)。

備後灘における標本漁協の 0 歳魚を対象とした定置網の CPUE (kg/統数) は 2~72 kg/

稼働統数の間で大きく変動し、2016年漁期は5kg/稼働統数であった(図3-13、表3-3)。

(3) 漁獲物の年齢組成

2022 年漁期の年齢組成は尾数換算で 0歳が 12%、1歳が 22%、2歳が 18%、3歳が 20%、4歳以上が 28%となった(図 4-1、補足資料 3)。年齢ごとの漁獲尾数の推移では、0歳、1歳がそれぞれ 2005 年漁期、2006 年漁期以降、減少傾向が続いているが、2022 年漁期の前年比では、0歳魚で 47%減と大きく減少したのに対して、1歳魚では 13%増となった。2歳では 2002 年漁期から 2006 年漁期にかけて減少した後、2011 年漁期にかけて増加したが、以後は緩やかな減少傾向が見られた後、2022 年漁期は大きく落ち込み、前年比で 47%減となった。3歳では 2007 年漁期にかけて増加した後、緩やかな減少の後、2022 年漁期では前年比で 12%減となった。4歳以上では 2008 年漁期に漁獲尾数は最多となった後、2013年漁期から 2020 年漁期にかけて、緩やかな減少傾向を示したが、2021 年漁期は増加となり、前年比で+35%となったが、2022 年漁期は減少に転じ、前年比で 30%減であった(図 4-1)。漁獲物の年齢組成は海域により異なり、有明海では 0歳が、瀬戸内海では 0~2歳が、日本海、東シナ海では 2歳以上が漁獲の中心になっている(図 4-2A)。瀬戸内海および関門海峡では、海域によって漁獲物の年齢構成は異なり、燧灘以東では、0歳と 3歳以上が、豊予以北では 0歳~2歳が、豊予以南では 1歳と 2歳が、関門海峡では 2歳以上が漁獲の中心となっている(図 4-2B)。

年齢別漁獲尾数の算出は、系群内を7海域(日本海北部、日本海中西部・東シナ海、有明海・八代海、燧灘以東、伊予灘以西豊予海峡以北、伊予灘以西豊予海峡以南、関門海峡)に区分して算出している(平井ほか2022b、補足資料7)。これら7つの海域区分のうち、当歳魚の漁獲がない関門海峡を除いた6つの海域区分について、区分した海域に基づき計算を実施している2009年漁期以降の当歳魚の漁獲尾数を図4-3Aに、直近6年間を図4-3Bに示す。海域区分別の当歳魚の漁獲尾数は2019年漁期を除き、有明海で最も多く、全体の29~78%を占めている(図4-3A)。瀬戸内海では海域内の3海域(燧灘以東、伊予灘以西豊予海峡以北、伊予灘以西豊予海峡以南)を足した場合、全体の22~64%を占め、2010年漁期、2016年漁期、2019年漁期、2022年漁期の瀬戸内海での合計は有明海よりも多かった(図4-3A)。直近6年間では、当歳魚の漁獲尾数は有明海と瀬戸内海の合計で93%以上を占めている(図4-3B)。

(4) 資源量と漁獲圧の推移

本系群の資源量は 2006 年漁期の 1,174 トンから減少傾向で、2022 年漁期は 678 トンであった。このうち、2002 年漁期から 2016 年漁期までの間、資源量 1,000 トン未満となったのは、2003 年 (973 トン)、2004 年 (951 トン)、2012 年 (999 トン)、2014 年 (965 トン)といずれも 900 トン台であったが、2017 年漁期 (999 トン)以降は 5 年連続で 1,000トン未満での減少が続き、2019 年漁期以降は 900トン台を割っている(図 4-4、表 4-1)。漁獲割合は 2002 年漁期から 2009 年漁期までの間、26~34%と 30%前後で推移し、2011 年漁期に 29%となった後は 19~24%と減少していたが、2021 年漁期に 24%(前年比で 30%増)となった後、2022 年漁期では 20%であった(図 4-4、表 4-1)。感度分析として M を 0.1 増加させた場合、2022 年漁期の資源量は 31%増加、親魚量は 30%増加、加入量は 35%

増加し、M & 0.1減少させた場合、2021 年漁期の資源量は 18%減少、親魚量は 18%減少、加入量は 21%減少した(図 4-5)。

親魚量は2006年漁期の337トンから2007年漁期の498トンまで増加した後、2018年漁期に509トンと資源評価期間中の最大値となるまでは、400トン台前後を推移した(399~509トン)が、2019年以降は減少傾向にあり、2022年漁期の親魚量は2018年漁期の親魚量に対する比で16%減の427トンと推定された(表4-1)。

(5) 加入量当たり漁獲量 (YPR)、加入量当たり親魚量 (SPR) および現状の漁獲圧

年齢別の漁獲係数 (F) の経年変化を図 4-6 と補足資料 3 に示す。2002~2022 年漁期の F の全年齢単純平均値 (0 歳~3 歳以上の各年 F の単純平均) は、2002 年漁期の 0.46 を最大値として、以降 2020 年漁期の 0.22 まで低下傾向であったが、2021 年漁期は 0.26 とやや上昇した後、2022 年漁期は 0.23 となった。F の全年齢平均に対して、0 歳では、2011 年漁期以降、F が低い傾向が見られ、2015 年漁期を除いて、全年齢の F 単純平均値よりも低い値となっている。2022 年漁期の 0歳 F は 0.128 で、過去最大であった 2006 年漁期の 0.492 に対して 26%まで減少している。1 歳では 2013 年漁期以降、全年齢の F 単純平均値よりも低い値となっており、2022 年漁期の 1 歳 F は 0.152 で、過去最大であった 2006 年漁期の 22%まで減少している。一方、2 歳では 2003 年漁期から 2009 年漁期まで全年齢の F 単純平均値よりも低い値を示したが、2010 年~2015 年漁期まで全年齢 F 単純平均値と増減を繰り返した後、2016年漁期以降は全年齢 F 単純平均値よりも高い値を示している。2022 年漁期の F は 0.274 で、最も F が高かった 2002 年漁期の 54%である。3 歳以上では 2011 年漁期以降、それぞれの F は全年齢単純平均値と比べて高い傾向にあり、また評価期間を通じても、3 歳以上の F は全年齢単純平均値と比べて高い傾向にある(図 4-6)。2022 年漁期の 3 歳以上 F は、最も F が高かった 2005 年漁期の 61%であった。

SPR、YPR と減少の漁獲圧の関係を図 4-7 に示す。現状の $F(2019\sim2021$ 年漁期の全年齢 Fの平均、 $F2019\sim2021:0.23$)は Fmax(0.31) より小さく、本系群で Fmsy proxy の代替値として選択されている F30% SPR(F=0.21)の 0.91 倍である。なお、ここでの Fmax、F30% SPR は、令和 4年 12 月に開催された「管理基準値等に関する研究機関会議」において最大持続生産量の代替値 MSY F00% F10 F11 F12 F12 F13 F16 F16 F17 F18 F19 F

(6) 人工種苗放流による資源添加状況と天然個体の加入状況の推移

本系群における人工種苗の放流尾数は1977年漁期の55.4万尾から2011年漁期の294万尾まで増加傾向であったが、放流魚の大型化や尾鰭の欠損防止を図った結果、2012年漁期に172.9万尾に減少し、その後2018年漁期から2020年漁期にかけて163.5万~165.8万尾で推移した後、2021年漁期は153.8万尾、2022年漁期は140.2万尾と減少傾向が見られる(速報値、図1、表4-2)。放流魚の一部には、胸鰭切除、背部への焼印や有機酸処理、アリザリン・コンプレクソン(ALC)による耳石染色などの標識が施され、天然魚と識別されている。また、本種の人工種苗は放流前の高密度飼育や餌不足が原因で噛み合い行動により尾鰭が欠損することがあるため(松村2005)、尾鰭の欠損の有無も放流魚と天然魚の識別に用いられている。このような外部標識や形態異常も放流魚指標として従来の評

価では混入率算定に用いられてきたが、外部標識個体の標識率は海域、放流県によって異 なり、また、形態異常の発生率も生産ロットによって一様とは言えないことから、令和 3 年度の評価より混入率算定は、何らかの全数標識指標(調査対象の放流群の全数が、 ALC や有機酸など、何らかの全数標識が施されている形質について観察)で天然魚、放 流魚の判定を行うこととした。また、令和3年度評価以前では、放流個体から耳石奇形が 観察されたことから、令和4年度評価では、通常の天然個体の耳石ではみられない耳石奇 形(薄片化や、ささくれ状、分離、星状石と扁平石の癒合などの耳石形成異常)について も、放流魚として判定することとしたが、耳石奇形にもかかわらず、ALC やヒレカット、 有機酸標識などの他の放流指標が全く観察されず、天然魚の可能性のある個体も散見され たこと、ALC 標識においては、放流時種苗を用いて全数標識されていることを確認済み であること(全国豊かな海づくり協会、私信)が報告されたことから、令和5年度評価で は耳石 ALC 標識については、左右の偏平石、礫石のいずれかで ALC が確認された場合、 もしくは有機酸標識、ヒレカット等、外部標識で明らかに放流魚と判定される個体(例: ヒレカット画像による確認等)は放流魚と判定し、それ以外は天然魚と判定することとし た。また、これに伴い、令和4年度評価において判定した耳石についても、再度、礫石の 確認を行い、結果の修正を行った。なお、有機酸標識、ヒレカットなどの外部標識指標で 画像確認から明らかに放流と判定できる場合は、放流魚として判定している。混入率の評 価は放流実施県とその周辺県の当歳魚サンプルを用いて行った。なお、当歳魚の漁獲が少 ない日本海北部は当歳魚時点での十分な放流情報が得にくいと判断して観察から除外し、 当歳魚の主たる漁獲海域である瀬戸内海燧灘以東、瀬戸内海伊予灘以西豊予海峡以北、有 明海を観察対象とした。なお、令和3年度より、混入率算定方法の変更(平井ほか 2022b、 補足資料 8) を行ったが、過去データについては年度によって標識率が大きく異なること から変更せず、2020年漁期データ分より新しい算定方法を用いることとしている。また、 2021 年漁期からは有明海の当歳魚漁獲物集積市場の市場データのうち、箱数データしか ない市場については、市場調査員の動画撮影から得たキャプチャー画像から、週あたり入 数を推定し、同時期の平均体重を用いて市場取扱尾数および取扱量の推定を行った(平井 ほか 2023、補足資料 7)。2022 年漁期についても同じ手法で市場取扱尾数、取扱量の推定 を行った。

その結果、混入率は 2002 年漁期の 5%から 2012 年漁期まで 2010 年漁期の 37%をピークに上昇傾向であった後、2013~2014 年漁期は 30%前後で推移し、2015 年漁期に 12%まで急激に低下した後、2018 年漁期にかけて 29%まで上昇し、2019 年漁期はほぼ横ばいであった。上記の算定方法を変更した結果、2020 年漁期は外部形態を併用した算定方法と比べて 35.9%と過去の資源評価対象年の中では 2番目に高い値を示したが、2021 年漁期では本年度の耳石 ALC の再確認の結果、25.1%と前年から低下した(図 4-8A、表 4-2)。一方、2022 年漁期では、系群全体の混入率は 55.3%と高い値を示した(表 4-2)。海域ごとの内訳は、有明海が 74.4%、伊予灘以西豊予海峡以北が 58.5%、燧灘以東が 1.8%であった(表 4-3)。得られた結果から、0 歳資源尾数に混入率を乗じて放流由来の 0 歳資源尾数を求め、0 歳資源尾数を天然魚と放流魚に分離した結果、天然魚の 0 歳資源尾数は 2002 年漁期の57.4 万尾から 2005 年漁期に 75.4 万尾まで増加した後、減少傾向となり、2021 年漁期は昨年度評価では 6.8 万尾と推定されたが、2022 年漁期評価では 12.6 万尾と 85%増と大幅な上

方修正となった。前項で近年 0 歳 F が低下していることが示されたこと、チューニング VPA において、1 歳魚チューニング指標値が前年よりも高く、昨年度の加入尾数が修正されたこと、現行の資源評価では 0 歳時のチューニング指標がなく、直近の 0 歳時点ではチューニングされていないことから、1 年遡って上方修正となったことが考えられた。なお、2020 年漁期の 0 歳魚については前年のチューニング時の 7.8 万尾から今年度評価では 8.6 万尾に修正されているものの、2021 年漁期の 1 歳魚の CPUE を反映して大幅な修正とはなっておらず、2021 年漁期の加入尾数の修正は、1 歳時点の CPUE の増加を反映したものであると考えられる。チューニングを経ていない直近の 0 歳魚では漁獲尾数だけでの資源尾数の推定は十分ではないことが考えられ、チューニングを経ている 1 年前以前の加入尾数の推定値(本年度の場合は 2021 年漁期以前)を用いた近年の加入の推定が妥当と考えられた。

0歳放流資源尾数は 2002 年漁期の 3.2 万尾から増加し、2006 年漁期の 16.3 万尾以降は 2012 年漁期の 12 万尾まで 10 万尾以上が 0歳資源尾数に添加されていたが、その後は減少 傾向で 2022 年漁期は 4.4 万尾と推定された。2021 年漁期は 0歳天然資源尾数と同様に当 初評価の 2.9 万尾から 4.2 万尾に上方修正されている(図 4-8B、表 5)。放流魚の漁獲加入までの生存率である添加効率は放流由来の 0歳資源尾数を放流尾数で除して算出した(図 4-8C)。その結果、添加効率は 2002 年漁期の 0.019 から 2004 年漁期の 0.076 をピークに 2005 漁期から 2014 年漁期までは 0.038 以上であったが、2015 年漁期~2020 年漁期は 0.025~0.035 と低下し、2021 年漁期は 0.027、2022 年漁期は 0.032 と推定された。(図 4-8C、表 5)。

(7) 親魚の資源動向と再生産成功率の推移

0歳資源尾数から放流資源尾数を除して得た 0歳天然資源尾数と親魚量から得られた再生産成功率とこの間の親魚量の経年推移を図 4-9A に示す。なお、親魚量は 3歳以上の全資源量とし、放流によって添加された親魚資源も天然由来親魚と同質の親魚資源として扱っている。再生産成功率は 2002 年漁期から 2005 年漁期にかけて 1尾/kg以上の値(1.00~2.09)を示した後、2005 年漁期の 2.09 尾/kg を最大として、2007 年漁期以降は 1尾/kg 未満の値を示しており、減少傾向にある。このうち 2007 年漁期から 2015 年漁期までは 0.47~0.91 尾/kg の間を推移し、横ばい傾向であったが、2015 年漁期の 0.70 尾/kg 以降は減少傾向にあり、特に 2017 年漁期の 0.38 尾/kg 以降は 2007~2015 年漁期の最小値である 0.47 尾/kg 未満の値で低く推移し、2022 年漁期の再生産成功率は 0.08 尾/kg と過去最小値となっている。(図 4-9A)

一方、親魚資源尾数 (3 歳以上資源尾数) は、2007 年漁期に 21.2 万尾と最多となった 後、2008 年漁期~2016 年漁期は 16.5 万~20.3 万尾の間を推移したが、2016 年漁期の 16.8 万尾から 2018 年漁期の 19.8 万尾まで増加した後、2019 年漁期以降は毎年減少が続いており、2022 年漁期は 15.4 万尾で、近年最も多かった 2018 年漁期と比べて 23%減となっている (表 4-1、図 4-9B)。この間、3 歳資源尾数では、2017 年漁期の 9.7 万尾以降減少し、2022 年漁期では 6.4 万尾 (2017 年漁期に対する比-34%) となった (図 4-9C)。4 歳以上資源尾数では、2019 年漁期の 11.2 万尾以降減少し、2022 年漁期では 9.0 万尾 (2019 年漁期に対する比-20%) と尾数単位での資源尾数の変動のほうが資源量の変動よりも大きい傾

向がある (図 4-9C)。一方、4 歳以上の漁獲物平均体重は、2003 年漁期の 2,462 g から、2021 年漁期の 3,355 g まで増加傾向にあり、これを全長一体重式、年齢一全長式を用いて逆算すると、2003 年漁期の 3.7 歳から 2021 年漁期の 5.4 歳まで増加することから、4 歳以上の年齢組成は高齢魚の割合が多くなっていることが予想される (図 4-9C)。このため、重量換算によって求められる親魚量は減少割合が少ないが、親魚資源尾数は親魚量の見かけの減少よりも大きくなったと考えられた。

(8) 加入量の見積もり

本系群の加入尾数および再生産成功率 (RPS) は資源評価対象期間である 2002 年漁期 以降では 2005 年漁期に過去最大加入を示し、2002 年漁期、2008 年漁期、2015 年漁期にその他の年と比べてやや高い加入を示したが、経年的な変化としては加入尾数の減少が続き、令和 3 (2021) 年度および令和 4 (2022) 年度評価ではそれぞれ過去最低を更新しており (平井ほか 2022b、2023)、本年度評価でも加入尾数は過去最低と推定された。このため、令和 4 年度に承認された研究機関会議報告書 (平井ほか 2022a) では、過去の資源評価年を一律参照することは加入尾数を過大推定することが考えられた。そこで、2002 年漁期 ~近年の低加入の傾向を考慮することがリスクを回避する安全な将来予測に繋がると考えられ、近年の低加入シナリオ (近年の低加入が 3 年間継続した後、徐々に加入が好転する 仮定) のもとでの加入をバックワード・リサンプリングによって想定し、この仮定のもとで将来予測が行われた。本系群では管理基準値や将来予測など、資源管理方針に関する検討会の議論をふまえて作成される項目については未確定であることから、本年度評価では管理基準値等に関する研究機関会議において提案された値に基づき、更新された資源評価に基づく直近年の生物パラメータを用いた暫定的な将来予測結果を補足資料 7 に示した。

(9) 現在の環境下において MSY を実現する水準の代替値

現在の環境下において最大持続生産量 MSY を実現する親魚量の代替値(SBmsy proxy) および MSY を実現する漁獲量の代替値(MSY proxy)として上記の「管理基準値等に関する研究機関会議」(平井ほか 2022a) で推定された値を補足表 8-2 に示す。

(10) 資源の水準・動向および漁獲圧の水準

MSYを実現する親魚量と漁獲圧を基準にした神戸プロットを補足図 6-1 に示す。本系群における 2022 年漁期の親魚量は MSY を実現する親魚量の代替値(SBmsy proxy)を下回るが、過去最低親魚量(SBmin)を上回る。2022 年漁期の親魚量は SBmsy proxy の 0.74 倍である(補足表 6-1)。また、2022 年漁期の漁獲圧は MSY を実現する漁獲圧の代替値(Fmsy proxy)を上回っており、2022 年漁期の漁獲圧は Fmsy proxy の 1.06 倍である。なお、神戸プロットに示した漁獲圧の比(F/Fmsy proxy)とは、各年の F の選択率の下でFmsy proxy の漁獲圧を与える F を%SPR 換算して求めた値と、各年の F 値との比である。親魚量の動向は、直近5年間(2018~2022 年漁期)の推移から減少と判断される。本系群の親魚量は資源評価期間を通じて SBmsy proxy を下回り、漁獲圧は Fmsy proxy よりも高い。

5. 資源評価のまとめ

2022 年漁期の資源量は 678 トン、親魚量は 427 トンと推定され、資源量は 2015 年漁期 以降、親魚量は 2018 年漁期以降、減少傾向にある。漁獲量は 134 トンと前年漁期の 187 トンから減少した。各年齢の F は、0歳、1歳は全年齢平均よりも低いものの、2歳以上は 2016 年漁期以降上昇している。また、2歳の F は 2015 年漁期以降、3歳以上は 2012 年漁期以降、全年齢平均よりも高い水準にある。2022 年漁期の再生産成功率は過去最小値であった。

6. その他

本系群は複数の産卵場および成育場を有し、それらを由来とする個体が日本海、東シ ナ海で混合して漁獲対象となった後、産卵回帰している可能性があることから、それぞれ の産卵場や成育場の保護が必要と考えられる。水産庁主催の資源管理のあり方検討会にお いては、本系群が個別事例として取り上げられ、2014年度に資源管理の方向性が取りま とめられた。その中では、資源管理を効果的に進めるために漁獲の多くを占める未成魚の 漁獲抑制に取り組むことに加えて、種苗放流においては資源管理との連携を図りながら十 分な放流尾数を確保しつつ、放流効果の高い場所での集中的な放流、全長 70 mm 以上で かつ尾鰭の欠損のない種苗の放流など種苗放流の高度化を検討する必要があるとされた。 天然魚および放流魚由来の加入量は減少傾向であることから、現在進められている未成魚 の漁獲抑制と尾鰭欠損防除などの健苗性向上も含めた種苗放流の高度化の取り組みが求め られるが、これらについては前項で示したように若齢のFの低下や1歳魚の将来予測の上 方修正への反映にも見られるように、一定の効果は現れており、今後も継続的な取り組み が必要と考えられる。他方、再生産成功率の低下と系群全体の親魚量が低下している現状 から、令和3年度評価では、自粛対象サイズを超えた2歳魚のFの増加や若齢と比べて相 対的に高いFを示す3歳以上の親魚も含めて、各年齢で必要な検討を行い、全年齢での資 源管理の取り組みが必要と考えられる、とした。本系群では、九州山口北西海域など、産 卵期外での CPUE が高い一方で、瀬戸内海中央部(燧灘以東海域)では産卵場海域の親魚 CPUE は経年的に低下していることが報告されており (平井ほか 2022c)、本年度評価にお いても、関門海峡でも瀬戸内海中央部と同様の産卵場海域での親魚 CPUE の低下が認めら れる。系群全体の親魚量に対して、各年の加入に関わる親魚量は想定よりも少ないことが 考えられ、各産卵場海域の親魚 CPUE の動向把握は再生産状態の把握において、今後さら に重要となると考えられる。

7. 引用文献

藤田矢郎 (1962) 日本産主要フグ類の生活史と養殖に関する研究. 長崎水試論文集, 2, 1-121. 日高 健・高橋 実・伊藤正博 (1988) トラフグ資源生態に関する研究I-福岡湾周辺における卵と幼稚魚の分布-. 福岡水試研報, 14, 1-11.

平井慈恵・片町太輔・真鍋明弘 (2022a) 令和 4 年度トラフグ日本海・東シナ海・瀬戸内海 系群の管理基準値等に関する研究機関会議資料. FRA-SA2022-BRP18-01, 水産研究・教育機構, 91 pp.

https://www.fra.affrc.go.jp/shigen_hyoka/SCmeeting/2019-1/20221027/FRA-SA2022-

BRP18-01.pdf

- 平井慈恵・片町太輔・真鍋明弘 (2023) 令和 4 年度トラフグ日本海・東シナ海・瀬戸内海系 群の資源評価. FRA-SA-2022-AC73, 令和 4 年度我が国周辺水域の漁業資源評価, 水産 庁・水産研究・教育機構, 78 pp.
 - https://abchan.fra.go.jp/wpt/wp-content/uploads/2023/07/details 2022 73.pdf
- 平井慈恵・片町太輔・真鍋明弘・鈴木重則・山下夕帆 (2022b) 令和 3 年度トラフグ日本海・東シナ海・瀬戸内海系群の資源評価. FRA-SA2021-RC03-1, 令和 3 年度我が国周辺水域の漁業資源評価, 水産庁・水産研究・教育機構, 66 pp.
 - https://abchan.fra.go.jp/wpt/wp-content/uploads/2021/details 2021 73.pdf
- 平井慈恵・片町太輔・西嶋翔太 (2022c) 6010 トラフグ日本海・東シナ海・瀬戸内海系群. 令和4年度資源量推定等高精度化事業報告書,水産庁・水産研究・教育機構,77-87.
- 平松一彦 (2001) VPA (Virtual Population Analysis). 平成 12 年度資源評価体制確立推進事業報告書 -資源解析手法教科書-, 日本水産資源保護協会, 東京, 103-128.
- 伊藤正木・多部田修 (2000) 漁業協同組合へのアンケート調査結果から推定した日本周辺のトラフグの分布. 水産増殖、48、17-24.
- 岩政陽夫 (1988) 黄海・東シナ海産トラフグの成長と成熟に関する一考察. 山口県外海水試研報, 23, 30-35.
- Katamachi, D., M. Ikeda and K. Uno (2015) Identification of spawning sites of the tiger puffer Takifugu rubripes in Nanao Bay, Japan, using DNA analysis. Fish. Sci., **81**, 485-494.
- Kusakabe, D., Y. Murakami and T. Onbe (1962) Fecundity and spawning of a puffer Fugu rubripes (T. et S.) in the central waters of the Inland Sea of Japan. J. Fac. Fish. Anim. Husb. Hiroshima Univ., 4, 47-79.
- 松村靖治 (2005) 有明海におけるトラフグ人工種苗の当歳時における放流効果と最適放流方法. 日水誌, 71, 805-814.
- 松村靖治 (2006) 有明海におけるトラフグ Takifugu rubripes の人工種苗の産卵回帰時の放流 効果. 日水誌, **72**, 1029-1038.
- 松浦修平 (1997) 生物学的特性.「トラフグの漁業と資源管理」多部田修編, 恒星社厚生閣, 東京, 16-27.
- 尾串好隆 (1987) 黄海・東シナ海産トラフグの年齢と成長. 山口県外海水試研報, 22, 30-36.
- 佐藤良三・東海 正・柴田玲奈・小川泰樹・阪地英男 (1996) 布刈瀬戸周辺海域からのトラフグ当歳魚の移動. 南西水研研報, 29, 27-38.
- 鈴木伸洋 (2001) トラフグの産卵場形成要因の解明. 「中回遊型魚類の回帰性の解明と資源 管理技術の開発 (プロジェクト研究成果シリーズ 369)」, 農林水産技術会議, 東京, 44-55
- 田北 徹・Intong Sumonta (1991) 有明海におけるトラフグとシマフグの幼期の生態. 日水 誌, **57**, 1883-1889.
- 田中昌一 (1960) 水産生物の Population Dynamics と漁業資源管理. 東海水研報, 28, 1-200.
- 上田幸男・佐野二郎・内田秀和・天野千絵・松村靖治・片山貴士 (2010) 東シナ海,日本海および瀬戸内海産トラフグの成長と Age-length key.日水誌, 76,803-811.

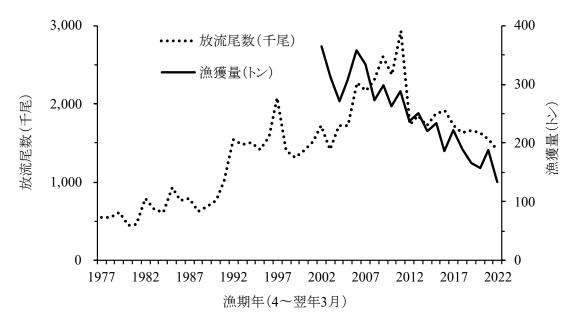


図1. 種苗放流尾数と漁獲量の推移



図 2-1. 分布域と主要産卵場

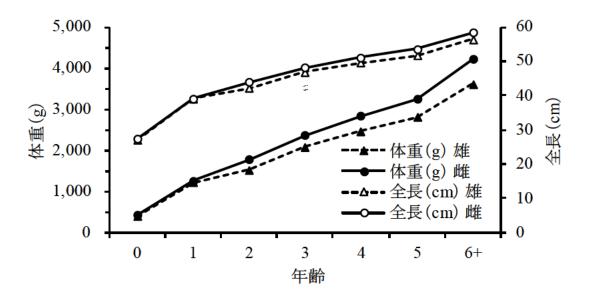


図 2-2. 年齢と成長(基準日:2月1日、過去5年平均(2018~2022年漁期))

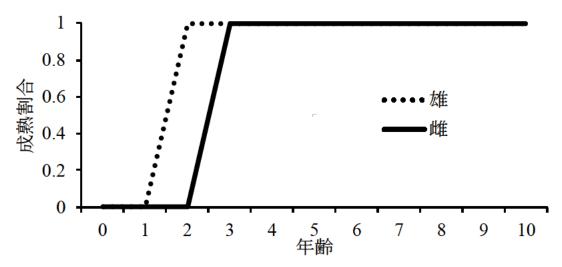


図 2-3. 年齢と成熟

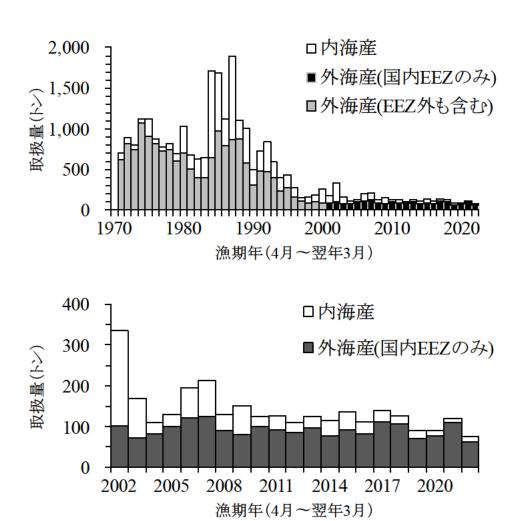
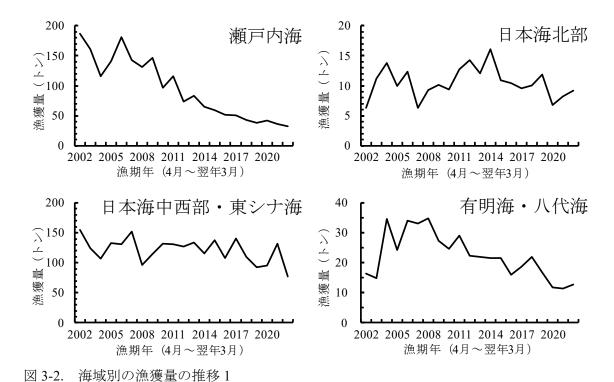



図 3-1. 下関唐戸魚市場の取扱量の推移(上段:資料全期間、下段:本系群資源評価期間)

80 100 燧灘以東 豊予以北 80 60 漁獲量 (トン) 漁獲量 (トン) 60 40 40 20 20 0 0 2002 2005 2008 2011 2014 2017 2020 2002 2005 2008 2011 2014 2017 2020 漁期年(4月~翌年3月) 漁期年(4~翌年3月) 50 豊予以南 関門海峡(4~7月) 40 漁獲量(トン) 6 漁獲量(トン) 30 4 20 2 10 2002 2005 2008 2011 2014 2017 2020 2002 2005 2008 2011 2014 2017 2020 漁期年(4~翌年3月) 漁期年(4~翌年3月)

図 3-3. 海域別の漁獲量の推移 2 瀬戸内海および関門海峡(4~7月)の各海域区分における漁獲量の推移。海域区分は平井ほか(2021)の補足資料 7 を参照。関門海峡は、2014年漁期以降の集計判明分を示す。

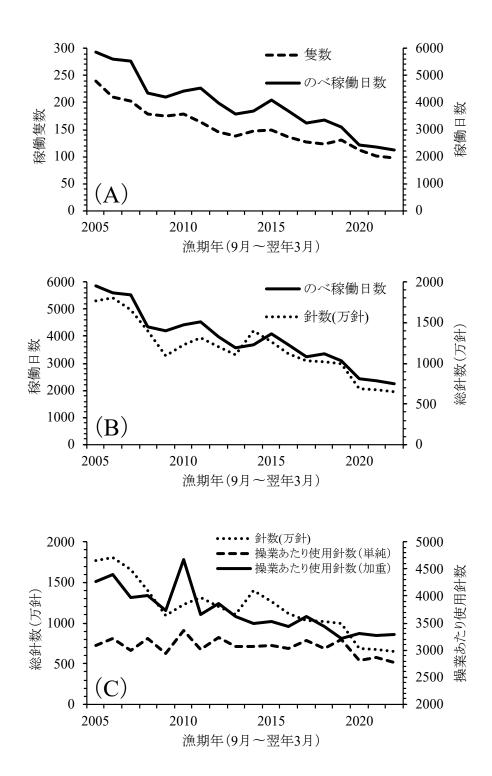


図 3-4. 九州・山口北西海域の 0 歳以上を対象としたはえ縄の努力量

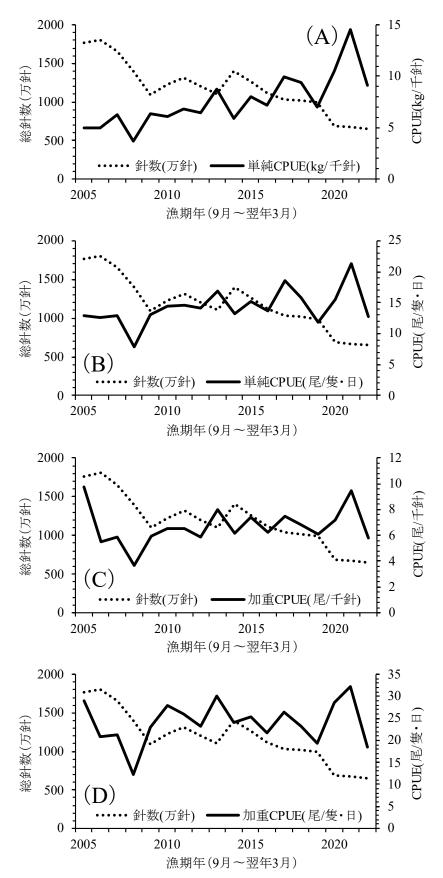


図 3-5. 九州・山口北西海域の 0 歳以上を対象としたはえ縄の CPUE

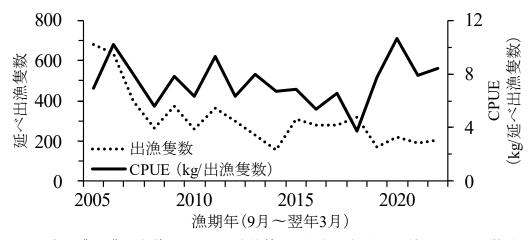


図 3-6. 伊予灘・豊後水道における標本漁協のはえ縄の努力量と単純 CPUE の推移

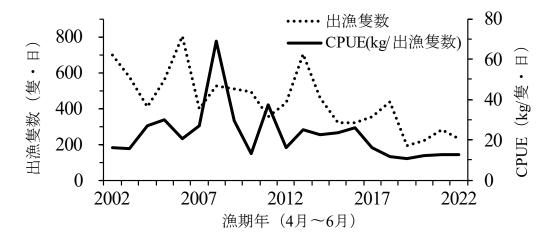


図 3-7. 備讃瀬戸における標本漁協の 1 歳以上 (1 kg 以上) を対象とした袋待網の努力量 と単純 CPUE の推移 2019 年以降は一標本漁協について出漁隻数、単純 CPUE を算 出。

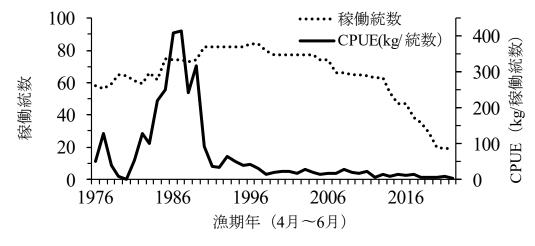
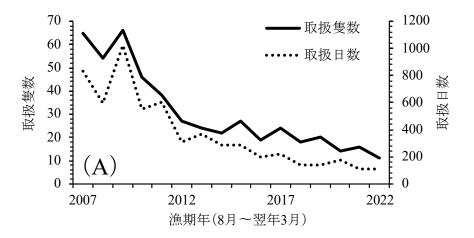



図 3-8. 備後灘における標本漁協の 1 歳以上を対象とした定置網の努力量と単純 CPUE の 推移

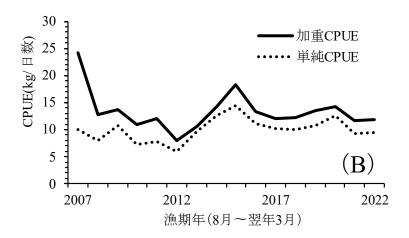
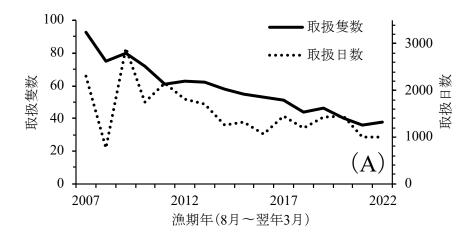



図 3-9. 豊後水道のはえ縄(豊予海峡以北)における漁協取扱隻数と単純 CPUE の推移 (A) および加重 CPUE (B) 加重 CPUE は船別の漁協取扱量に対する加重値を使用。

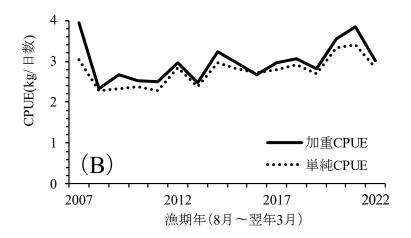


図 3-10. 豊後水道の釣り漁業(豊予海峡以南)における漁協取扱隻数と単純 CPUE の推移(A)および加重 CPUE(B) 加重 CPUE は船別の漁協取扱量に対する加重値を使用。

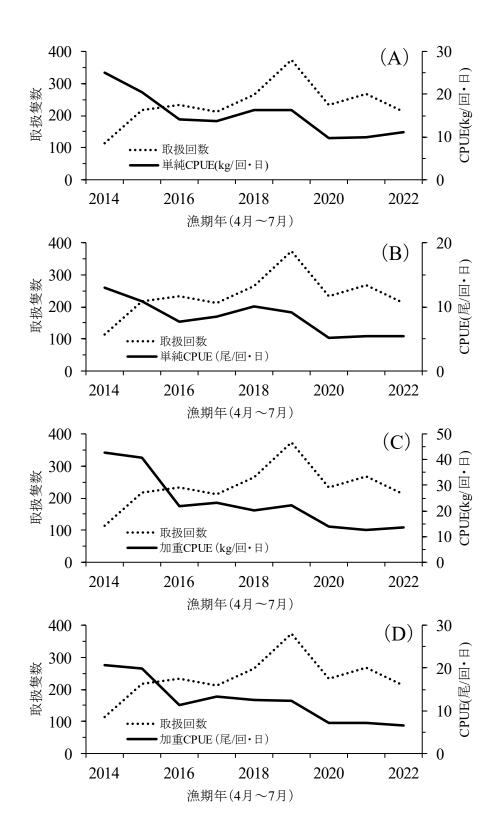


図 3-11. 関門海峡の釣り漁業における市場取扱量に基づく単純 CPUE (A:重量単位およびB:尾数単位) と加重 CPUE (C:重量単位、D:尾数単位) の推移 加重 CPUE は船別の市場取扱尾数に対する加重値を使用。

実線:各 CPUE。点線:延べ取扱回数。

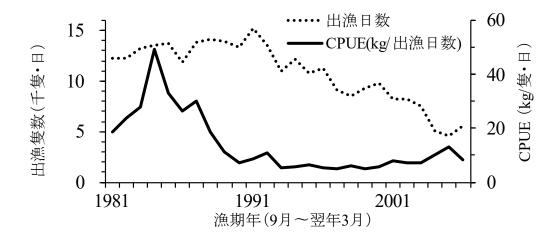


図 3-12. 山口県瀬戸内海側のはえ縄の努力量と単純 CPUE の推移

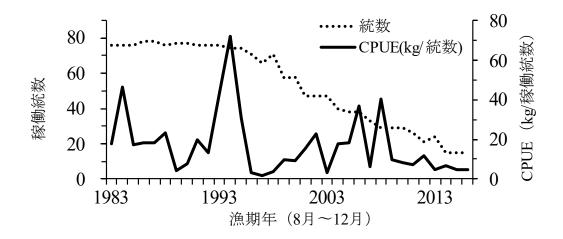


図 3-13. 備後灘における標本漁協の 0 歳を対象とした定置網の努力量と単純 CPUE の推移

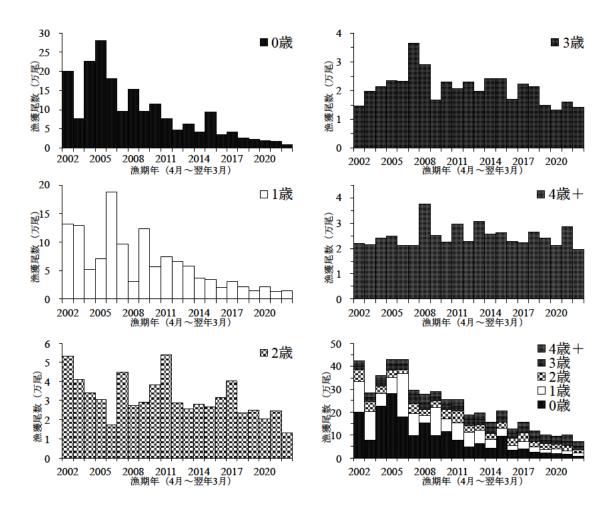


図 4-1. 年齢ごとの漁獲尾数の推移

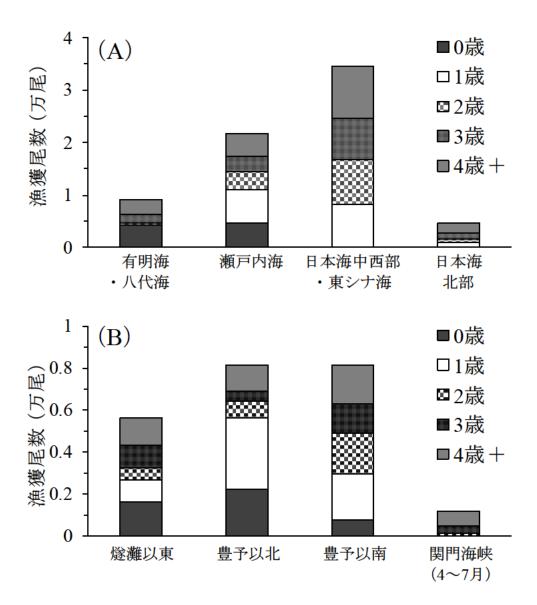


図 4-2. (A) 2021 年漁期 (4月〜翌年3月) の海域別年齢別漁獲尾数 (B) 2021 年漁期の瀬戸内海 (4月〜翌年3月) および関門海峡 (4〜7月) の海域 別年齢別漁獲尾数

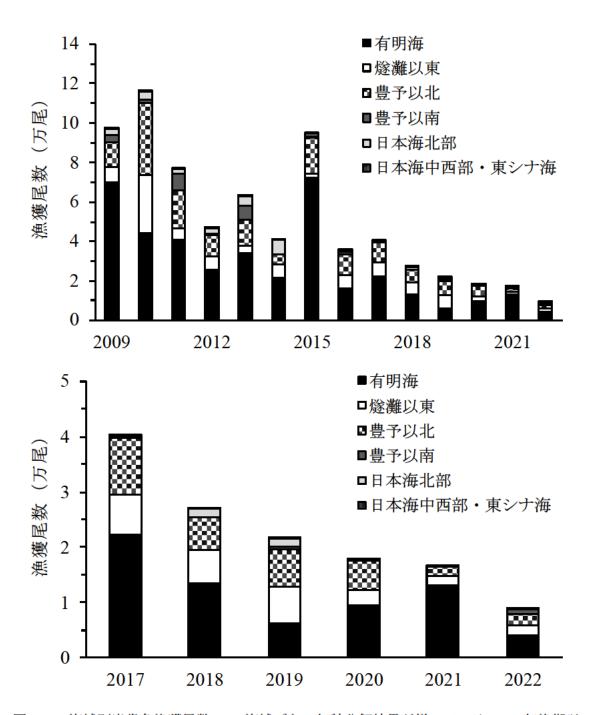


図 4-3. 海域別当歳魚漁獲尾数 (A)海域ごとの年齢分解結果が揃っている 2009 年漁期以降、(B)直近 6 年間。

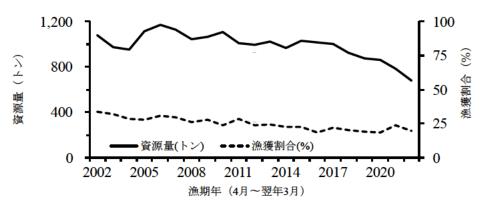
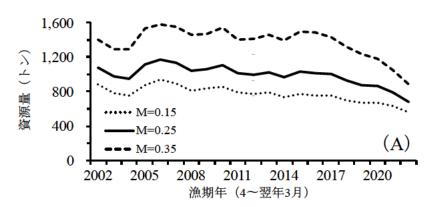
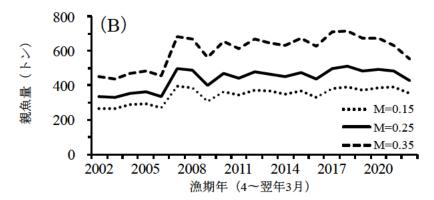




図 4-4. 資源量と漁獲割合の推移

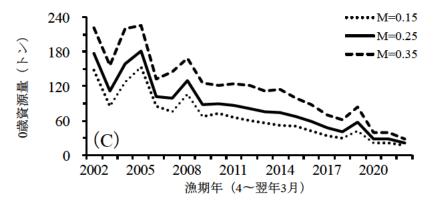


図 4-5. 資源量推定におけるに自然死亡係数 M の感度分析結果 (A) 資源量、(B) 親魚量、(C) 0 歳資源量。単位:トン。

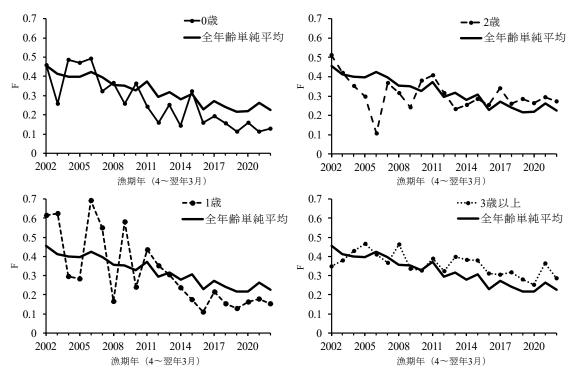


図 4-6. 各年齢の F と、F の全年齢平均の推移

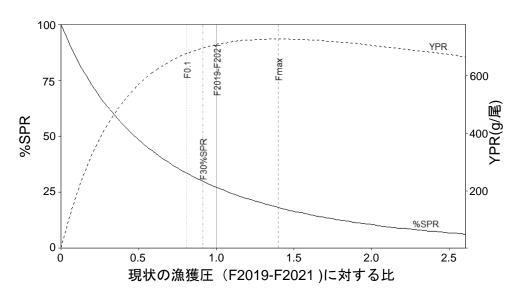
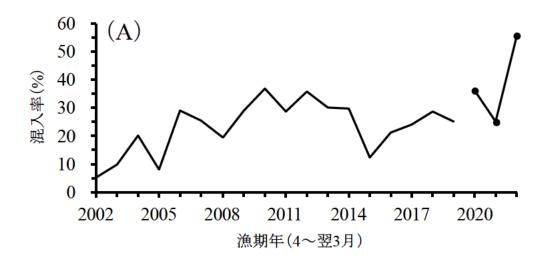
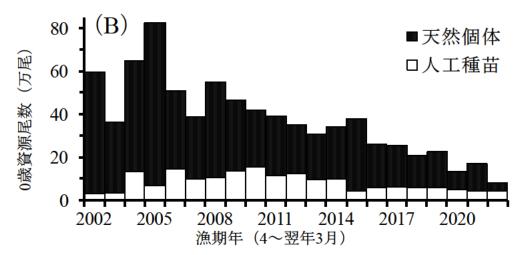




図 4-7. Fと YPR、SPR の関係

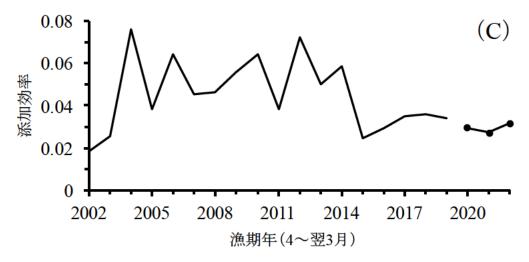


図 4-8. 人工種苗放流による 0 歳資源尾数への添加状況

(A) 混入率の推移 ドットは全数標識に基づく算定結果 (2020 年漁期以降)、(B) 0 歳 資源尾数の天然魚と放流魚の内訳、(C) 添加効率の推移。ドットは全数標識に基づく 算定結果 (2020 年漁期以降)。

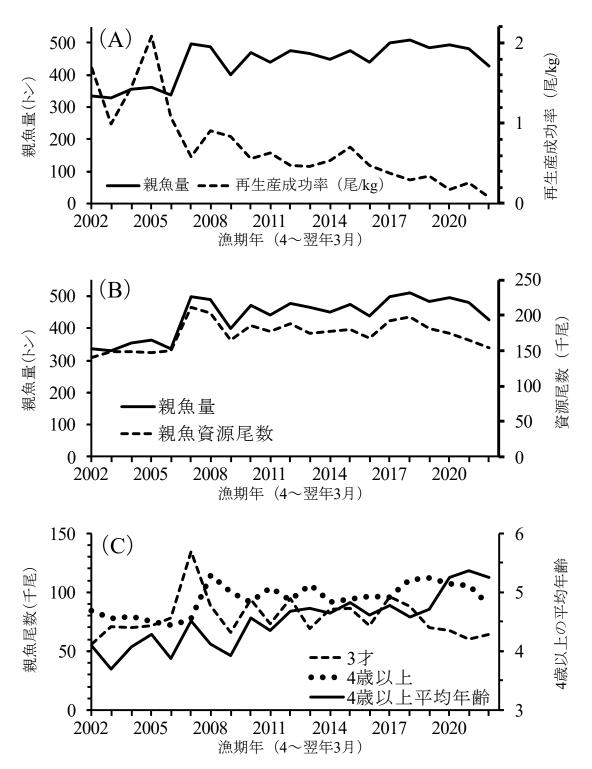


図 4-9. 再生産成功率と親魚の資源動向

(A) 親魚量と再生産成功率の年推移、(B) 親魚量と親魚尾数の年推移、(C) 年齢別親魚尾数と4歳以上のプラスグループの推定平均年齢。平均年齢は4歳以上の平均体重から推定平均全長→推定平均年齢への逆算による。

表 3-1. 下関唐戸魚市場の取扱量の推移 (トン)

漁期年	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
外海産	615	809	736	1,068	909	810	730	745	611	707
内海産	90	74	63	57	218	69	51	66	82	325
合計	704	883	799	1,125	1,127	879	781	811	693	1,032
漁期年	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
外海産	513	397	395	637	973	786	865	881	577	315
内海産	172	229	247	1,079	709	336	1,025	225	428	176
<u>合計</u>	684	626	642	1,716	1,681	1,123	1,891	1,106	1,005	490
漁期年	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
外海産	485	471	392	234	279	164	114	95	103	94
内海産	244	369	198	168	152	105	35	65	85	165
合計	729	840	590	402	430	269	148	160	188	258
漁期年	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
外海産	87	101	73	83	100	122	124	91	81	100
内海産	92	234	95	27	29	75	89	38	70	25
合計	179	336	168	111	129	197	212	129	151	125
漁期年	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
外海産	92	86	98	78	93	82	112	108	71	78
内海産	35	23	26	36	43	30	26	18	19	13
合計	127	109	124	114	136	112	138	126	90	91
L										
漁期年	2021	2022								
外海産	109	62								
内海産	11	14								
_ 合計	120	76								

漁期年(4月~翌年3月)集計。

表 3-2. 府県別および有明海 0歳魚の漁獲量の推移 (トン)

漁期年	秋田	山形	石川	福井	京都	鳥取	島根	山口 日本海	福岡
2002	*0	-	6	8	7	4	2	56	59
2003	6	-	5	5	3	3	1	32	52
2004	4	-	7	0	3	3	1	43	50
2005	4	-	6	0	1	3	4	51	51
2006	5	-	8	4	1	2	4	40	58
2007	6	-	6	5	2	3	3	44	65
2008	7	-	5	9	4	3	4	38	27
2009	6	-	4	1	2	3	4	34	49
2010	6	-	4	4	2	3	5	33	64
2011	6	-	7	9	3	4	4	35	60
2012	6	-	8	5	2	3	3	39	59
2013	6	-	6	6	2	2	4	48	56
2014	7	-	9	9	2	1	3	24	71
2015	6	-	4	5	2	1	4	42	75
2016	5	-	6	6	2	2	3	34	54
2017	5	-	5	5	3	1	4	49	70
2018	5	-	5	6	2	1	5	52	40
2019	7	-	5	6	2	2	3	32	47
2020	3	2	2	5	1	1	3	35	45
2021	4	1	4	5	2	1	3	56	61
2022	4	2	3	4	2	1	3	27	37

*2003年1~3月のみ。

斜体:再集計により修正した漁期年・府県(小数点以下の場合は示さず)

表 3-2. 府県別および有明海 0歳魚の漁獲量の推移 (トン) (続き)

漁期年	佐賀	長崎	熊本	**有明海 0歳魚	鹿児島	宮崎	大分	愛媛
2002	10	16	3	10	2	8	51	20
2003	13	18	5	8	1	7	44	22
2004	7	10	4	28	1	2	26	21
2005	9	24	3	16	1	4	25	19
2006	12	19	5	21	2	12	45	24
2007	9	27	10	12	1	8	33	22
2008	3	22	9	11	1	2	18	20
2009	9	23	8	10	1	9	37	29
2010	14	21	7	5	1	3	24	25
2011	9	21	10	6	1	4	25	22
2012	6	21	7	4	1	2	17	21
2013	7	19	6	6	1	3	20	12
2014	3	19	5	3	1	3	14	14
2015	5	16	7	9	1	2	15	14
2016	2	14	7	2	1	1	9	12
2017	4	16	8	3	1	1	11	13
2018	3	19	8	2	0	1	10	13
2019	2	14	8	1	0	1	9	13
2020	1	9	9	1	1	1	11	11
2021	2	8	6	2	0	1	8	11
2022	2	9	7	1	0	1	7	11

**福岡県、長崎県、佐賀県、熊本県の漁獲量の合算。

太字: 概数值。

斜体:再集計により修正した漁期年・府県(小数点以下の場合は示さず)

表 3-2. 府県別および有明海 0歳魚の漁獲量の推移 (トン) (続き)

漁期年	山口 瀬戸内海	広島	岡山	兵庫 瀬戸内海	香川	徳島	和歌山	計
2002	39	10	16	2	15	15	4	364
2003	39	10	9	10	11	5	1	311
2004	22	12	3	6	16	1	0	272
2005	33	11	12	7	20	3	0	308
2006	49	9	10	10	17	2	1	358
2007	33	4	7	15	13	3	1	334
2008	17	8	10	8	45	1	1	272
2009	26	5	6	12	18	3	1	299
2010	19	6	6	4	7	1	0	263
2011	20	6	9	9	17	1	1	289
2012	18	3	2	2	7	0	0	238
2013	16	4	6	4	17	0	0	251
2014	14	2	2	2	11	0	0	220
2015	12	2	2	2	8	0	0	233
2016	12	2	2	2	9	0	0	188
2017	11	2	3	2	7	0	0	222
2018	8	1	2	2	5	0	0	190
2019	7	1	2	2	3	0	0	166
2020	7	2	1	3	3	0	0	158
2021	4	1	1	2	4	0	0	187
2022	4	0	2	3	3	0	0	134

太字: 概数值。

斜体:再集計により修正した漁期年・府県(小数点以下の場合は示さず)

表 3-3. 海域別漁法別の努力量と CPUE の推移

	九州・山口	北西海域	伊予	灘・豊後水道		備讃瀬戸
海州左	はえ	縄 ¹		はえ縄 ²		袋待網 ³
漁期年	<i>₽</i> 1 */-	CPUE	出漁	CPUE	出漁	CPUE
	針数	(kg/千針)	隻数	(kg/出漁隻数)	隻数	(kg/出漁隻数)
1999					531	19
2000						
2001						
2002					698	16
2003					578	16
2004					412	27
2005	17,647,521	5	680	7	558	30
2006	18,063,367	5	636	10	806	21
2007	16,554,741	6	399	8	398	27
2008	13,972,456	4	265	6	525	69
2009	10,988,266	6	373	8	510	29
2010	12,257,017	6	258	6	493	13
2011	13,167,825	7	365	9	354	37
2012	11,975,289	6	300	6	431	16
2013	11,037,943	9	227	8	706	25
2014	14,036,369	6	157	7	462	22
2015	12,618,270	8	307	7	322	24
2016	11,164,212	7	279	5	318	26
2017	10,362,745	10	277	7	354	16
2018	10,183,029	9	318	4	436	12
2019	9,888,216	7	168	8	193 ^a	10 ^a
2020	6,877,675	11	220	11	220 ^a	12 ^a
2021	6,712,258	15	189	8	281 ^a	12 ^a
2022	6,532,341	9	204	8	233 ^a	13 ^a

¹漁期は9月~翌年3月、1歳以上を対象。本データからチューニング指標を抽出・使用。

²漁期は7月~翌年3月、全年齢を対象。

³漁期は4月~6月、2歳以上の成熟個体と未成熟の1歳を対象。

^a対象の標本漁協が2から1に減少。

表 3-3. 海域別漁法別の努力量と CPUE の推移 (続き)

				備後	<u></u>			
				定置約	罔 ³			
漁期年	√ 大*/-	CPUE	漁期年	外米	CPUE	漁期年	分大米人	CPUE
	統数	(kg/統数)		統数	(kg/統数)		統数	(kg/統数)
1976	58	51	1996	84	40	2016	47	10
1977	56	128	1997	84	29	2017	38	12
1878	59	40	1998	80	15	2018	35	5
1979	65	8	1999	77	19	2019	29	5
1980	64	_	2000	77	23	2020	20	4
1981	61	54	2001	77	21	2021	19	7
1982	59	127	2002	77	15	2022	19	2
1983	66	99	2003	77	26			
1984	62	221	2004	77	18			
1985	75	251	2005	74	14			
1986	74	408	2006	74	17			
1987	74	413	2007	66	16			
1988	73	241	2008	66	27			
1989	74	318	2009	65	18			
1990	82	91	2010	65	17			
1991	82	37	2011	64	23			
1992	82	33	2012	63	6			
1993	82	65	2013	63	13			
1994	82	49	2014	54	7			
1995	82	39	2015	47	13			

⁴漁期は4~6月、2歳以上の成熟個体と未成熟の1歳を対象。

表 3-3. 海域別漁法別の努力量と CPUE の推移 (続き)

	伊予灘以西	• 豊予海峡以北	伊予灘以西	• 豊予海峡以南	関門	門海峡
海 丗 左	は	 え縄 ⁵	金	与り ⁶	金	ちり ⁷
漁期年	のべ取扱	CPUE	のべ取扱	CPUE	のべ取扱	CPUE
	隻数	(kg/取扱隻数)	隻数	(kg/取扱隻数)	回数	(kg/取扱回数)
2007	834	10	2,300	3		
2008	597	8	754	2		
2009	1,025	11	2,909	2		
2010	548	7	1,746	2		
2011	604	8	2,148	2		
2012	311	6	1,814	3		
2013	369	10	1,716	2		
2014	287	13	1,255	3	113	25
2015	288	14	1,318	3	217	20
2016	200	11	1,065	3	232	14
2017	219	10	1,440	3	212	14
2018	141	10	1,193	3	264	16
2019	137	11	1,433	3	373	16
2020	172	13	1,438	3	234	10
2021	112	9	995	3	268	10
2022	109	10	1,002	3	213	11

⁵漁期は8~翌年3月、全年齢を対象。

⁶漁期は8~翌年3月、全年齢を対象。

⁷漁期は4~5月、1歳以上を対象。

表 3-3. 海域別漁法別の努力量と CPUE の推移 (続き)

	山口	県瀬戸内海側	1	備後灘		山口	県瀬戸内海側	備後攤		
海州左		はえ縄 ⁷	Ţ	定置網 ⁸	_ 海 ## 左 _		はえ縄 ⁷	7	它置網 ⁸	
漁期年	出漁	CPUE	公米4	CPUE	-漁期年 <i>-</i>	出漁	CPUE	红米	CPUE	
	日数	(kg/出漁日数)	統数	(kg/統数)		日数	(kg/出漁日数)	統数	(kg/統数)	
1981	12,214	19			1999	9,319	5	57	10	
1982	12,241	24			2000	9,827	6	58	9	
1983	13,187	28	76	18	2001	8,229	8	47	15	
1984	13,571	49	76	46	2002	8,234	7	47	23	
1985	13,687	33	76	17	2003	7,505	7	47	3	
1986	11,806	27	78	18	2004	5,039	10	40	18	
1987	13,800	30	78	18	2005	4,597	13	38	18	
1988	14,151	19	76	23	2006	5,571	8	38	37	
1989	13,911	11	77	4	2007			33	6	
1990	13,374	7	77	8	2008			29	40	
1991	15,170	9	76	20	2009			29	10	
1992	13,542	11	76	13	2010			29	8	
1993	10,970	5	76	43	2011			26	7	
1994	12,172	6	74	72	2012			21	12	
1995	10,727	7	74	31	2013			24	4	
1996	11,279	5	71	3	2014			15	7	
1997	9,141	5	66	2	2015			15	5	
1998	8,494	6	71	4	2016			15	5	

⁷漁期は1~12月、0歳以上を対象。

⁸漁期は8~12月、0歳を対象。

表 4-1. トラフグ日本海・東シナ海・瀬戸内海系群の資源解析結果

	 漁獲量		親魚量	 0歳資源	 漁獲割合	——————— 再生産成功率
漁期年	(トン)	(トン)	(トン)	尾数(尾)	(%)	(尾/kg)
2002	364	1,079	335	597,920	34	1.69
2003	311	973	329	363,580	32	1.00
2004	272	951	355	645,660	29	1.45
2005	308	1,115	362	821,182	28	2.09
2006	358	1,174	337	508,911	31	1.07
2007	334	1,131	498	386,738	30	0.58
2008	272	1,045	489	548,865	26	0.91
2009	299	1,064	399	466,734	28	0.83
2010	263	1,106	470	417,950	24	0.56
2011	289	1,010	441	391,052	29	0.63
2012	238	999	477	351,696	24	0.48
2013	251	1,027	466	308,833	24	0.46
2014	220	965	450	339,887	23	0.53
2015	233	1,029	475	379,418	23	0.70
2016	187	1,014	438	261,379	18	0.47
2017	222	999	500	251,634	22	0.39
2018	190	926	509	205,727	20	0.29
2019	166	877	484	224,548	19	0.35
2020	158	862	494	134,125	18	0.18
2021	187	788	481	168,257	24	0.27
2022	*134	678	427	80,086	20	0.08

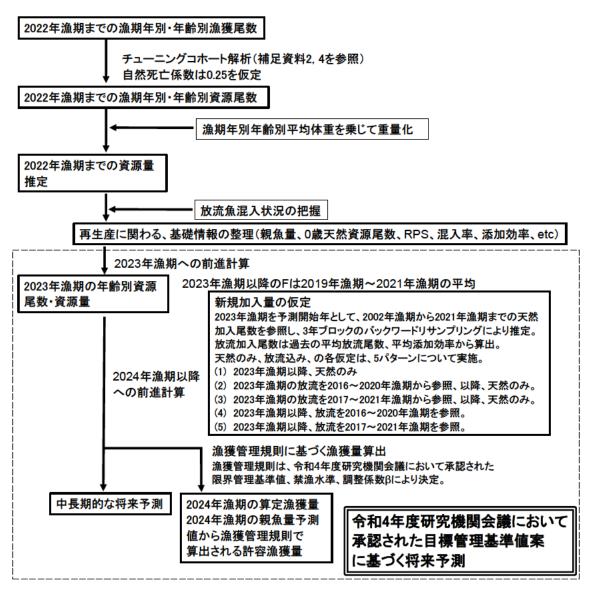
^{*}概数值。

表 4-2. 種苗放流尾数、0歳資源尾数、混入率、添加効率の推移

—————————————————————————————————————	種苗放流尾数	0 歳資源尾	数(尾)	混入率	Thu th th
漁期年	(万尾)	天然魚	放流魚	(%)	添加効率
2002	172.0	566,273	31,646	5.3	0.018
2003	141.2	327,809	35,771	9.8	0.025
2004	172.2	514,770	130,890	20.3	0.076
2005	171.7	755,318	65,864	8.0	0.038
2006	227.5	362,015	146,896	28.9	0.065
2007	217.1	288,596	98,142	25.4	0.045
2008	229.1	442,970	105,896	19.3	0.046
2009	240.9	331,912	134,822	28.9	0.056
2010	237.5	264,782	153,168	36.6	0.064
2011	294.0	278,709	112,342	28.7	0.038
2012	172.9	226,555	125,140	35.6	0.072
2013	185.2	216,083	92,750	30.0	0.050
2014	172.1	239,156	100,731	29.6	0.059
2015	187.7	333,196	46,222	12.2	0.025
2016	190.7	205,641	55,738	21.3	0.029
2017	172.8	190,742	60,892	24.2	0.035
2018	163.5	146,909	58,818	28.6	0.036
2019	165.8	168,108	56,440	25.1	0.034
2020	163.7	85,924	48,201	35.9	0.029
2021	153.8	126,065	42,191	25.1	0.027
2022	*140.2	35,795	44,291	55.3	0.032

^{*}速報値。

表 4-3. 放流魚の海域別混入率と 0 歳魚漁獲尾数で加重平均した混入率の推移


\\ \tau \				ì	昆入率(%)					
漁期年	有	明海	瀬戸内	海(伊予灘以西豊予海峡	以北)	瀬戸	内海(燧灘」	以東)	その他の海域	加重平均
	市場調査	標本船調査	瀬戸内海西部	山口県瀬戸内海側	豊予海峡以北	燧灘	備後灘	備讃瀬戸	ての他の海域	加里十均
2002	17.1		4.2	-	-	_	_	_	-	5.3
2003	11.3		11.6	_	_	_	-	_	_	9.8
2004	27.5		6.8	=	_	-	-	_	_	20.3
2005	17.2		0.3	=	_	-	-	_	_	8.0
2006	35.4		14.7	_	_	_	_	_	_	28.9
2007	40.0		9.9	_	_	_	_	_	_	25.4
2008	32.2		8.4	=	_	-	-	_	_	19.3
2009	37.4		9.1	=	_	-	-	_	_	28.9
2010	69.6		8.5	_	_	_	_	_	_	36.6
2011	58.9		2.6	_	_	_	_	_	_	28.7
2012	80.5		_	43.2	_	_	_	_	_	35.6
2013	43.7		_	100.0	_	_	_	_	_	30.0
2014	49.9		_	71.5	_	_	_	_	_	29.6
2015	15.8		_	25.6	_	_	_	_	_	12.2
2016	45.3		_	38.3	_	_	_	_	_	21.3
2017	41.8		_	25.1	_	-	-	_	_	24.2
2018	65.5		_	17.9	_	-	-	_	_	28.6
2019	90.9		_	15.6	_	_	-	_	_	25.1
2020	49.4	48.1	_	_	25.4	10.7	13.9	0.0	_	27.0
2020	(有明	海): 49.3	瀬戸内海	(伊予灘以西豊予海峡以	北) : 25.4	瀬戸戸	内海(燧灘以	東): 5.6	_	35.9
	35.8	14.8	_	_	9.1	5.3	0.0	0.2	_	
2021	(有明	海): 30.3	瀬戸内海	(伊予灘以西豊予海峡以	、北): 9.1	瀬戸戸	内海(燧灘以	東): 0.7	_	25.1
2022	74.8	68.6	_	_	58.5	3.8	0.0	1.2	_	55.2
	(有明:	海) : 74.4	瀬戸内海	(伊予灘以西豊予海峡以	北): 58.5	瀬戸戸	内海(燧灘以	東):1.8		55.3

[※] 瀬戸内海西部は豊予海峡以南を含む

^{※※ 2020}年以降の結果は、全数標識個体(ALCまたは有機酸標識)に基づく。なお、R5年度評価からは耳石奇形による判別は併用せず、全数標識個体に基づく判別とし、2021年漁期については修正後の値を掲載した。

^{※※※} 当歳魚についての集計結果。

補足資料 1 資源評価の流れ

▶ 点線枠内は資源管理方針に関する検討会における管理基準値や漁獲管理規則等の議論 をふまえて作成される。

(http://www.fra.affrc.go.jp/shigen hyoka/SCmeeting/2019-1/index.html)

補足資料 2 資源計算方法

(1) 年齢別漁獲尾数の算出

年齢別漁獲尾数は漁期年(4月~翌年3月)で2002年漁期以降について算出した。能登 半島以西の日本海、東シナ海における全長組成は京都府、鳥取県、山口県、福岡県、佐賀 県、長崎県で得られた月別全長組成データを 4~7月、8~11月(または 8~10月、11月)、 12月~翌年3月で期別に集計し、各期における各県の漁獲量を用いて加重平均した。標識 再捕調査の結果、能登半島以北の日本海における個体群と能登半島以西の日本海、東シナ 海、瀬戸内海における個体群の行き来は限定的と推定されていることから(伊藤 1998、 伊藤ほか 1998)、データが得られている 2009 年漁期以降は石川県、山形県、秋田県で得 られた月別全長組成データを福井県以西の日本海、東シナ海と同様な方法で集計した。瀬 戸内海における全長組成は福岡県、大分県、愛媛県、香川県、山口県、広島県、岡山県、 兵庫県で得られた月別全長組成データを能登半島以西の日本海、東シナ海と同様な方法で 集計した。得られた全長組成は①全長階級値別雌雄割合(補足資料 5)を用いて雌雄別全 長組成に分解、②全長-体重関係式によって雌雄別全長組成を重量化、③雌雄別全長組成 を混合正規分布に分解し、年齢組成に変換、④漁獲量と③の比を用いて②の年齢組成を引 き延すという手順によって年齢別漁獲尾数に変換した。ただし、有明海・八代海(松村 2006) および関門海峡における 4~7 月の漁獲物は性比が雄に偏るため、全てを雄とした。 全長階級値別雌雄割合は 1999~2022 年漁期に日本海、東シナ海、瀬戸内海で漁獲された 個体のデータ (ただし、4~7月は2000年漁期および2010~2022年漁期の13,985個体、8 ~11 月は 1999~2022 年漁期の 3,640 個体、12 月~翌年 3 月は 1999~2022 年漁期の 5,565 個体)から作成した(補足資料5)。なお、瀬戸内海では、令和3年度の資源計算方法に従 い、海域ごとに漁獲される年齢構成を考慮し、燧灘以東、伊予灘以西豊予海峡以北、豊予 海峡以南、の3海域に区分して年齢分解を実施した(平井ほか2022: FRA-SA2021-RC03-1 の補足資料 7)。また、成育場である瀬戸内海備讃瀬戸の成育場および有明海における 0 歳については8~12月の市場調査および標本船(もしくは標本漁協)調査から、調査個体 数および市場取扱数から推定し、0歳の漁獲尾数を算出した。

(2) コホート解析

解析年を漁期年、4月を誕生月、寿命を 10歳と仮定し、田内・田中の方法(田中 1960)により求めた自然死亡係数を M=0.25として、Popeの近似式により資源尾数を推定した。 0歳は7月加入とし、Mに9/12を乗じた。

$$N_{a,y} = N_{a+1,y+1}e^{M} + C_{a,y}e^{\frac{M}{2}}$$

Na,y は y 年漁期における a 歳の資源尾数で、Ca,y は y 年漁期における a 歳の漁獲尾数。 a 歳、y 年漁期の F は、

$$F_{a,y} = -\ln\left(1 - \frac{C_{a,y}e^{\frac{M}{2}}}{N_{a,y}}\right)$$

で計算した。

また、3歳と4歳以上のFが等しいと仮定し、3歳と4歳以上の資源尾数は以下の式で計算した。

$$\begin{split} N_{3,y} &= \frac{C_{3,y}}{C_{4+,y} + C_{3,y}} N_{4+,y+1} e^{M} + C_{3,y} e^{\frac{M}{2}} \\ N_{4+,y} &= \frac{C_{4+,y}}{C_{3,y}} N_{3,y} \end{split}$$

最近年の資源尾数は、

$$N_{a,2021} = \frac{C_{a,2021}}{1 - e^{-F_{a,2022}}} e^{\frac{M}{2}}$$

で計算した。2022 年漁期の F の選択率は各年齢の過去 3 年間(2019~2021 年漁期)の平均とし、4歳以上の F を以下に述べるチューニング指標を用いて探索的に求めた。

【チューニングによる直近年の漁獲係数の推定】

本資源評価調査を通じて得られた資源量指標値と海域ごとの年齢別漁獲尾数から、経 年的にいずれのデータも揃っていることを確認した結果、日本海中西部・東シナ海、伊予 灘以西豊予海峡北、伊予灘以西豊予海峡南、の3海域で資源評価期間を通じて平均で90% の1歳魚の漁獲があることが明らかになった(平井ほか2022)。これらの海域のうち、日 本海中西部・東シナ海では2005年より、残り2海域からは2007年より資源量指標値が得 られたことから、1歳魚資源量指標値を抽出し、これをチューニング指標として、1歳資 源尾数の年変動との残差が最小となる 2022 年漁期の最高齢(4+)の漁獲係数(F)を推定 することで、直近年のFの推定を行った。なお、得られている資源量指標値からは、廃船、 休船と思われる漁業規模の縮小や他魚種対象漁法におけるバイキャッチなどの可能性が考 えられたため、チューニング指標とした1歳魚資源量指標値の算出においては、各海域の CPUE の単純集計ではなく、船ごとの CPUE を算出し、各船の漁獲動向に応じて漁獲尾数 または漁獲量で加重することで海域別の加重 CPUE を算出し、これを各海域の漁獲尾数 (8月~翌年3月)で加重平均することで3海域統合の1歳魚資源量指標値を作成してチ ューニング指標とした。令和4年度評価でのチューニング対象期間の検討に基づき、本年 度評価においても、2009年漁期以降の1歳魚資源量指標値を用いてチューニング指標とし た。

漁期年	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
指標値	7.57	7.40	4.62	6.13	5.79	4.12	6.96	3.12	4.11	2.97
漁期年	2019	2020	2021	2022						
指標値	2.13	3.14	2.50	2.96						

直近年の最高齢 F は、1 歳魚資源量指標値を用いて次式の負の対数尤度を最小化する F4+, 2022 を探索的に求めることで推定した。

$$\begin{split} \log L &= \sum_{y=2009}^{2022} \left[\frac{\left\{ \log \left(I_{1,y} \right) - \log \left(q_1 \times N_{1,y} \right) \right\}^2}{2\sigma_1^2} + \frac{1}{2} \times \log(2\pi\sigma_1^2) \right] \\ &\sigma_1 = \sqrt{\frac{\sum \left\{ \ln \left(I_{1,y} \right) - \ln \left(qN_{1,y} \right) \right\}^2}{n}} \\ &q_1 = exp\left(\frac{\sum \ln \left(I_{1,y} / N_{1,y} \right)}{n} \right) \end{split}$$

ここで、F4+, 2022 は 2022 年漁期の 4+歳の漁獲係数、I1,y は 1 歳魚資源量指標値(3 海域統合)、q1 はチューニングパラメーター、N1,y はコホート解析により推定された y 年漁期の 1 歳魚資源尾数である。 σ 1 は 1 歳魚資源量指標値の観測誤差を表す標準偏差であり、複数の資源量指標値がある場合には個別に標準偏差を推定することにより各指標の重みづけを行うことが可能となる(Hashimoto et al. 2018)。

(3) SPR、YPRの解析

SPR、YPR を寿命 10 歳として、以下の式で求めた。

$$SPR = \sum_{a=0}^{10} S_a f r_a W_a$$

$$S_{a+1} = S_a e^{(-F_a - M)} (S_0 = 1)$$

$$YPR = \sum_{a=0}^{10} S_a W_a (1 - e^{-F_a}) e^{-\frac{M}{2}}$$

Saはa歳の残存率、Faはa歳の成熟率、Waはa歳の平均体重。

(4) モデル診断結果

得られた結果について、「資源評価のモデル診断の手順と診断結果の提供指針(令和 5年度)」(FRA-SA2023-ABCWG02-03、資源評価高度化作業部会 2023)に従って、本系群の評価に用いたコホート解析の統計学的妥当性や仮定に対する頑健性につ て診断した。各モデル診断結果は、チューニングの手順、期間選択について記した補足資料 4 において、残差解析、 トロスペクティブ解析、感度分析、ブートストラップ信頼区間推定の結果を示した。チューニングにより資源量はチューニングなしと比べて過大推定の傾向が改善された。

なお、チューニングコホート解析およびそのモデル診断においては、統計言語 R (ver4.3.1) を用い、1 系資源の VPA 計算・管理基準値計算・将来予測シミュ ーション を行うための関数を集めた R パッケージである frasyr (ver2.2.0.3) 中の VPA 関数を用いて 行った。

引用文献

- Hashimoto, M., H. Okamura, M. Ichinokawa, K. Hiramatsu and T. Yamakawa (2018) Impacts of the nonlinear relationship between abundance and its index in a tuned virtual population analysis. Fish. Sci., **84**, 335-347.
- 平井慈恵・片町太輔・真鍋明弘・鈴木重則・山下夕帆 (2022) 令和 3 (2021) 年度トラフ グ日本海・東シナ海・瀬戸内海系群の資源評価. FRA-SA2021-RC03-1, 水産庁・水産 研究・教育機構, 66 pp.
 - https://abchan.fra.go.jp/wpt/wp-content/uploads/2021/details 2021 73.pdf
- 伊藤正木 (1998) 標識放流効果から推定した秋田沖漁場のトラフグ成魚の移動・回遊. 日水誌, **64**, 645-649.
- 伊藤正木・小嶋喜久雄・田川 勝 (1998) 若狭湾で実施した標識放流実験から推定したトラフグ成魚の回遊. 日水誌, **64**, 435-439.
- 松村靖治 (2006) 有明海におけるトラフグ Takifugu rubripes の人工種苗の産卵回帰時の放流 効果. 日水誌, 72, 1029-1038.
- 資源評価高度化作業部会 (2023) 令和 5 (2023) 年度 資源評価のモデル診断手順と情報提供指針. FRA-SA2023-ABCWG02-03.
- 田中昌一 (1960) 水産生物の Population Dynamics と漁業資源管理. 東海水研報, 28, 1-200.
- 上田幸男・佐野二郎・内田秀和・天野千絵・松村靖治・片山貴士 (2010) 東シナ海, 日本 海および瀬戸内海産トラフグの成長と Age-length key. 日水誌, **76**, 803-811.

補足資料3 コホート解析結果の詳細

年齢別漁獲	尾数(尾)										
漁期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
0歳	200,599	75,185	226,822	281,185	180,156	97,151	153,115	97,026	115,909	76,832	46,958
1歳	131,443	128,544	52,720	71,444	187,537	96,477	31,038	123,015	56,229	75,195	66,599
2歳	53,466	41,207	34,148	30,712	17,536	45,033	27,712	29,224	38,380	54,067	28,911
3歳	14,626	19,675	21,410	23,518	23,178	36,680	29,190	16,578	23,026	20,727	23,095
4歳以上	21,962	21,593	24,294	24,859	21,308	21,025	37,474	25,120	22,558	29,586	22,822
計	422,096	286,204	359,395	431,718	429,716	296,367	278,528	290,964	256,102	256,406	188,384
年齢別漁獲	尾数 (尾)										<u>_</u>
漁期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	<u> </u>
0歳	62,763	41,102	95,434	35,186	40,268	26,927	21,668	17,894	16,546	8,776	
1歳	57,693	37,129	34,534	20,944	31,416	21,386	15,427	21,962	13,723	15,473	
2歳	25,594	28,333	26,656	31,643	40,301	23,537	25,119	20,487	24,732	13,075	
3歳	19,948	24,097	23,987	16,913	22,492	21,236	14,990	13,332	16,114	14,105	
4歳以上	30,719	25,736	26,219	22,751	22,305	26,563	24,173	21,182	28,378	19,724	_
計	196,716	156,397	206,829	127,437	156,782	119,649	101,377	94,857	99,492	71,153	<u> </u>
年齢別漁獲	係数										
漁期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
0歳	0 46	0 26	0 49	0 47	0 49	0 32	0 37	0 26	0 36	0 24	0 16
1歳	0 62	0 63	0 30	0 28	0 69	0 55	0 16	0 58	0 24	0 44	0 35
2歳	0 51	0 42	0 35	0 30	0 11	0 37	0 32	0 24	0 38	0 41	0 31
3歳	0 35	0 38	0 43	0 47	0 41	0 37	0 46	0 34	0 33	0 39	0 32
4歳以上	0 35	0 38	0 43	0 47	0 41	0 37	0 46	0 34	0 33	0 39	0 32
単純平均	0 46	0 41	0 40	0 40	0 42	0 40	0 36	0 35	0 33	0 37	0 29
年齢別漁獲	係数										
漁期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	_
0歳	0 25	0 14	0 32	0 16	0 19	0 16	0 11	0 16	0 11	0 13	_
1歳	0 30	0 24	0 17	0 11	0 21	0 15	0 13	0 16	0 18	0 15	
2歳	0 23	0 25	0 28	0 25	0 34	0 26	0 28	0 26	0 29	0 27	
3歳	0 40	0 38	0 38	0 31	0 31	0 32	0 28	0 25	0 36	0 29	
4歳以上	0 40	0 38	0 38	0 31	0 31	0 32	0 28	0 25	0 36	0 29	
単純平均	0 32	0 28	0 31	0 23	0 27	0 24	0 22	0 22	0 26	0 23	 '
年齢別資源	尾数 (尾)										_
漁期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
0歳	597,920	363,580	645,660	821,182	508,911	386,738	548,865	466,734	417,950	391,052	351,696
1歳	323,734	313,045	232,962	328,747	424,762	257,868	232,160	315,613	298,592	240,956	254,237
2歳	151,336	136,126	130,360	134,905	192,979	165,304	115,687	153,416	137,239	182,922	121,298
3歳	56,387	70,677	69,649	71,388	77,961	134,817	88,997	65,641	93,690	73,012	94,746
4歳以上	84,669	77,566	79,033	75,461	71,673	77,277	114,254	99,462	91,784	104,220	93,627
計	1,214,045	960,994	1,157,664	1,431,684	1,276,287	1,022,004	1,099,964	1,100,865	1,039,255	992,161	915,603
年齢別資源	[星数 (尾)										
漁期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
0歳	308,833	339,887	379,418	261,379	251,634	205,727	224,548	134,125	168,257	80,086	_
1歳	248,811	198,886	244,352	227,655	184,654	171,947	146,037	166,428	94,901	124,424	
2歳	139,227	142,860	122,126	159,825	158,815	116,084	115,039	100,119	110,233	61,799	
3歳	68,953	85,843	86,255	71,588	96,547	88,120	69,634	67,425	59,893	64,023	
4歳以上	106,183	91,683	94,281	96,296	95,745	110,224	112,289	107,120	105,478	89,528	
計	872,007	859,159	926,432	816,743	787,395	692,102	667,547	575,218	538,762	419,861	_
-								_			_

補足資料3 コホート解析結果の詳細(続き)

漁期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
)歳	176	111	160	181	102	99	129	88	90	87	81
歳	340	328	220	359	443	277	247	350	333	226	246
2歳	227	205	217	213	292	257	180	226	213	256	195
3歳	108	138	143	151	153	272	180	142	200	146	195
4歳以上	227	191	212	211	184	225	308	258	270	294	282
計	1,079	973	951	1,115	1,174	1,131	1,045	1,064	1,106	1,010	999
年齢別資源	量(トン)										
魚期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	•
)歳	75	74	67	58	47	41	57	28	28	21	-
1歳	251	213	288	256	196	185	155	178	96	127	
2歳	235	228	199	261	257	191	181	162	183	102	
歳	144	176	185	152	207	184	145	140	127	132	
i 歳以上	322	274	290	286	292	325	339	353	354	295	
it it	1,027	965	1,029	1,014	999	926	877	862	788	678	<u>.</u>
年齢別親魚	量(トン)										
漁期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
)歳	0	0	0	0	0	0	0	0	0	0	0
l歳	0	0	0	0	0	0	0	0	0	0	0
2歳	0	0	0	0	0	0	0	0	0	0	0
3歳	108	138	143	151	153	272	180	142	200	146	195
4歳以上	227	191	212	211	184	225	308	258	270	294	282
Ħ	335	329	355	362	337	498	489	399	470	441	477
年齢別親魚	量(トン)										
漁期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	-
)歳	0	0	0	0	0	0	0	0	0	0	•
l歳	0	0	0	0	0	0	0	0	0	0	
2歳	0	0	0	0	0	0	0	0	0	0	
3歳	144	176	185	152	207	184	145	140	127	132	
4歳以上	322	274	290	286	292	325	339	353	354	295	
Ħ	466	450	475	438	500	509	484	494	481	427	-
年齢別平均	体重 (g)										
魚期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
)歳	295	306	247	220	201	257	235	188	215	221	231
l歳	1,050	1,049	945	1,093	1,042	1,076	1,065	1,110	1,117	940	967
2歳	1,500	1,504	1,664	1,576	1,513	1,553	1,552	1,474	1,552	1,401	1,609
3歳	1,916	1,954	2,056	2,118	1,963	2,019	2,026	2,156	2,135	2,006	2,063
4歳以上	2,683	2,462	2,676	2,791	2,566	2,918	2,698	2,593	2,941	2,825	3,007
年齢別平均	体重 (g)										_
漁期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	_
)歳	243	217	177	223	187	200	253	209	165	260	-
1歳	1,010	1,073	1,177	1,124	1,062	1,075	1,061	1,069	1,015	1,023	
2歳	1,685	1,598	1,629	1,635	1,617	1,641	1,575	1,620	1,658	1,654	
3歳	2,090	2,051	2,140	2,127	2,148	2,089	2,083	2,082	2,127	2,066	

補足資料 4 チューニング指標算出の手順とモデル診断結果

(1) チューニング指標算出の手順

トラフグ日本海・東シナ海・瀬戸内海系群は本評価結果 2. 生態 (1) 分布・回遊でも示されているように、広域に分布し、海域ごとに様々な漁法で漁獲されるなど、特定のチューニング指標の探索が困難であったことから、令和 3 年度評価までは資源計算においてチューニングを用いない VPA 計算を実施してきた。一方で、令和 3 年度評価では年齢別漁獲尾数算定の精度向上を図り、本系群を瀬戸内海 3 海域、日本海、東シナ海 2 海域、有明海、関門海峡の 7 海域に分割し、それぞれの海域の漁獲対象サイズを考慮して各海域の漁獲尾数算定を実施したところ、個々の海域で漁獲される年齢構成が明らかとなったことで、各海域から得られる資源量指標値についても、どの海域で、どの年齢の情報が得られているかの判別が容易となった(補足表 4-1)。

補足表 4-1 からは、伊予灘以西・豊予海峡以北、以南海域(以下、豊予以北、豊予以南)において、全年齢で、日本海中西部・東シナ海からは 1 歳以上について資源量指標値に関する情報が得られている。そこで、これら 3 つの海域の漁獲尾数の合計がチューニング指標として代表できる年齢群の抽出を試み、補足表 4-2 に示した。

補足表 4-2 からは、豊予南北+外海の漁獲尾数割合は、評価期間の単純平均で、0歳で30%、1歳で90%、2歳で82%、3歳で69%、4歳以上で57%と年齢ごとに大きく異なった。中でも、1歳の漁獲尾数割合は90%であり、豊予南北および外海の1歳漁獲物は、本系群の1歳の漁獲変動を代表できるものと考えられた。特に豊予南北海域の主漁期が8月~翌年3月であるのに対し、外海の主漁場である九州・山口北西海域では9月~翌年3月が漁期であることから、漁期がほぼ同時期であること、全長一年齢関係から、8月の雄の推定全長は34.6 cm、雌で34.8 cmであるように、概ね全長35 cm以上の個体と推定されることから、各季節、海域の漁獲自粛サイズよりも大型であるため、漁獲動向の把握がしやすいと考えられた。

以上の理由から、本資源評価では豊予南北および日本海中西部・東シナ海の3海域について1歳魚資源量指標値を抽出し、これをチューニング指標としての使用を検討した。

<1歳魚資源量指標値の抽出手順について>

日本海中西部・東シナ海および豊予南北海域の資源量指標値から1歳魚資源量指標値を 抽出するにあたり、以下の指標値を海域の代表として使用した。

日本海中西部・東シナ海:九州・山口北西海域のとらふぐはえ縄漁獲成績報告書集計期間:2005年漁期~2022年漁期(9月~翌年3月)

なお、対象とした漁獲成績報告書で扱われている総漁獲量(9月~翌年3月)の日本海中西部・東シナ海における8月~翌年3月の漁獲量に対する割合は集計期間中61~95%の変動があり、単純平均で77±8%(平均±SD)である。

単位:尾数/隻・日

豊予以北海域:大分県の豊予海峡以北海域で操業されたはえ縄の日別船別漁協取扱量集計期間:2007年漁期~2022年漁期(8月~翌年3月)

単位:kg/隻・日

なお、対象とした漁協取扱量の大分県豊予海峡以北海域での漁獲量(8月~翌年3月)の割合は集計期間中28~88%の変動があり、単純平均で43±14%(平均±SD)である。

豊予以南海域:大分県の豊予海峡以南海域で操業された釣りの日別船別漁業取扱量集計期間:2007年漁期~2022年漁期(8月~翌年3月)

なお、対象とした漁協取扱量の大分県豊予海峡以北海域での漁獲量 (8月~翌年3月)の割合は集計期間中38~74%の変動があり、単純平均で54±13%(平均±SD)である。

単位:kg/隻・日

<加重 CPUE の整理>

各指標値は、統一できる単位が隻・日であったため、これに統一した。

各海域の指標値における漁獲努力量(出漁隻数もしくは延べ取扱隻数)は、2022 年漁期は集計開始年に対し、豊予以北海域で13%、豊予以南海域で43%、日本海中西部・東シナ海で40%まで減少していた。各海域における漁獲努力量の減少の要因として、操業者の高齢化による廃船や他魚種対象漁法(内海のはえ縄は、とらふぐ対象とは限らない)によるバイキャッチなど様々な理由が考えられるが、各年の漁獲努力量の減少要因が一様であるかどうかは不明であった。特に高齢化や不漁による廃船や休船が生じた場合、漁獲量の少ない小型船から努力量が減る可能性が考えられたことから、そのような廃船や休船が生じた場合には過去に比べて CPUE を過大評価する可能性が考えられた。一方で、バイキャッチ船がデータに含まれる場合、実際の操業回数が不明であるため、操業回数から、海域の漁獲実態を把握することは CPUE を過小評価する可能性が考えられた。このため、各年の漁獲実態を代表するためには、漁獲量や漁獲尾数などの漁獲結果で個々の操業船の漁獲成績に重み付けをすることで、各年の漁獲実態を代表する CPUE を示す必要があると考えられた。そこで、操業船ごとに個別の各年 CPUE を作成し、これに船ごとの漁獲量を加重して算出した加重平均値を作成し、海域別年別加重 CPUE とした。

$$Ww\text{-}CPUE = \frac{\sum (CPUE_{v,y} \times C_{v,y})}{\sum C_{v,y}}$$

Ww-CPUE は重量単位の加重 CPUE、CPUEv,y は y 年の船 v の CPUE、Cv,y は y 年の船 v の 漁獲量である。

得られた各年の加重 CPUE は重量単位で表されるため、これを年齢分解結果を用いて総漁獲量に対する 1 歳魚の漁獲量の割合から、1 歳魚の加重 CPUE (重量単位) を抽出し、1 歳魚の平均体重で尾数に換算して、尾数単位の 1 歳魚加重 CPUE (尾/隻・日) に置き換えた。

日本海中西部・東シナ海については、九州・山口とらふぐはえ縄漁獲成績報告書に記

載の主要 4 県(山口、福岡、佐賀、長崎)の全長組成がほぼ全数を占めたため(2019 年漁期に 99%、2021 年漁期に 95~99%、2022 年漁期に 97%となった他はすべて 100%)、日本海中西部・東シナ海の年齢分解結果から 1 歳魚の漁獲尾数の割合を抽出して、尾数単位の1 歳魚加重 CPUE を算出した。豊予海峡以北海域、豊予海峡以南海域については大分県の同海域年齢分解結果を用いた。

なお、日本海中西部・東シナ海について、指標値として扱った九州・山口北西海域の とらふぐはえ縄漁獲成績報告書では、漁業者ごとに銘柄別平均体重の算出方法が異なった ため、本報告書の漁獲量や銘柄別内訳は使用せず、総漁獲尾数のみを使用した。

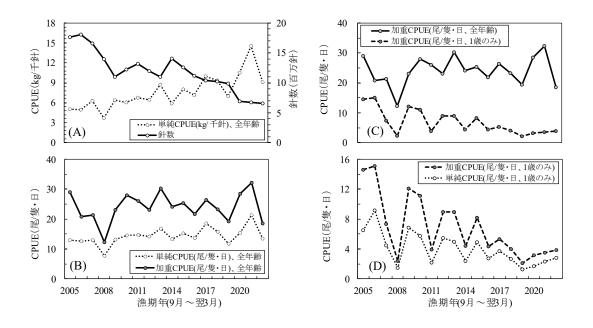
$$Wn\text{-}CPUE = \frac{\sum (CPUE_{v,y} \times N_{v,y})}{\sum N_{v,y}}$$

Wn-CPUE は尾数単位の加重 CPUE、CPUE $_{v,y}$ は y 年の船 v の CPUE(尾数単位)、 $N_{v,y}$ は y 年の船 v の総漁獲尾数である。得られた加重 CPUE(尾数単位、全年齢)に総漁獲尾数 に対する 1 歳魚の漁獲尾数の割合を抽出して、尾数単位の 1 歳魚加重 CPUE(尾/隻・日)を算出した。

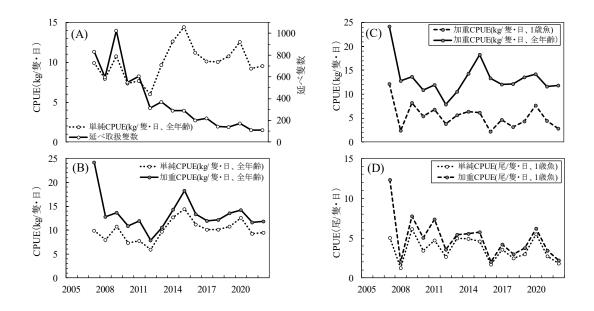
得られた3海域の加重CPUEは各海域を代表するCPUEとして扱った。これを各年の各海域の1歳漁獲尾数を用いて加重平均し、3海域統合の加重CPUEを算出し、これを本系群の1歳魚チューニング指標値として扱った。

得られた各海域の漁獲努力量の単純集計による単純 CPUE、総漁獲量または総漁獲尾数に対する加重 CPUE、年齢分解結果から得られた1歳魚加重 CPUE、3海域統合の1歳魚加重 CPUEについて、補足図 4-1~3、および補足表 4-3~5に、また3海域統合の加重 CPUEについて、補足図 4-4 および補足表 4-6に示す。

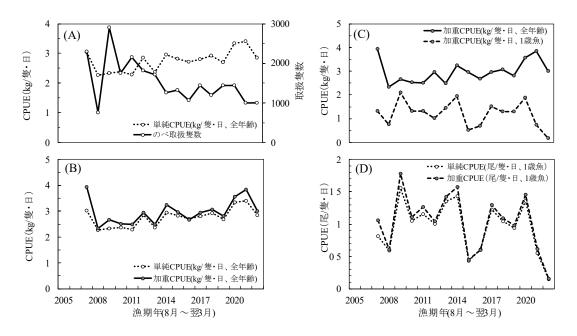
チューニング VPA を実施し、チューニングのモデル診断として、残差分析、 トロスペクティブ解析を実施するとともに、ブートストラップ信頼区間の推定を資源量、親魚量、加入量に対して実施した。


残差分析における、3条件での残差プロット、指標値と予測値の経年変化、および1歳 資源尾数と指標値の相関関係を補足図4-5に示す。残差プロットは2016年漁期で95%信 頼区間からわずかに外れた(補足図4-5A)。一方、1歳魚資源尾数と資源量指標値の相関 は、昨年度評価時よりも相関係数がやや高く、2016年漁期の残差が95%信頼区間から外 れた影響は少ないと考えられた(補足図4-5C)。

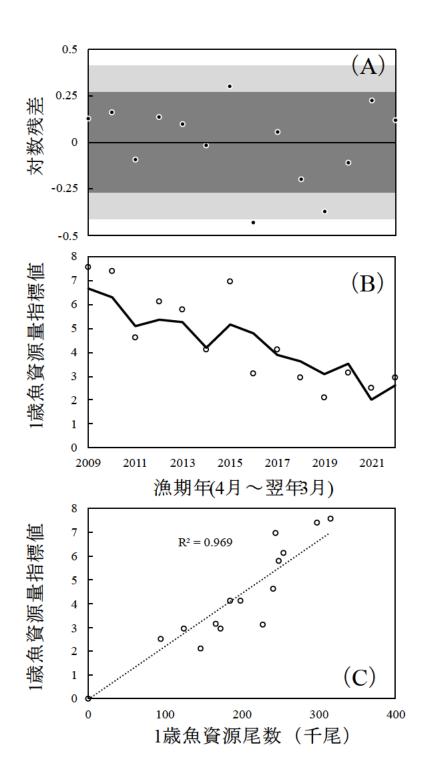
ジャックナイフ法によるチューニング指標値の影響解析結果を補足図 4-6 に示す。Base データ (2002~2022 年漁期) と比べて、2021 年漁期、2022 年漁期のデータを除外した場合に資源量、親魚量、年齢別漁獲係数でその他の漁期年を除外した場合と比べて、推定値にずれが生じたが残差プロットで外れ値となった 2016 年漁期の有無は推定結果に影響がないことが示された。2021 年漁期と 2022 年漁期がジャックナイフ法で外れ値となった原因としては、2022 年漁期では 1 歳魚のチューニングにより、2021 年漁期の 0 歳魚加入尾数に上方修正が生じたことから、それぞれの年のデータを除外すると加入の上方修正が反


映せず、親魚量、資源量が過小に評価されるためと考えられる。このことから、チューニングにおいて参照した 2009~2022 年漁期のすべての指標値を用いた場合に最も安定した資源量推定が行えると考えられた。

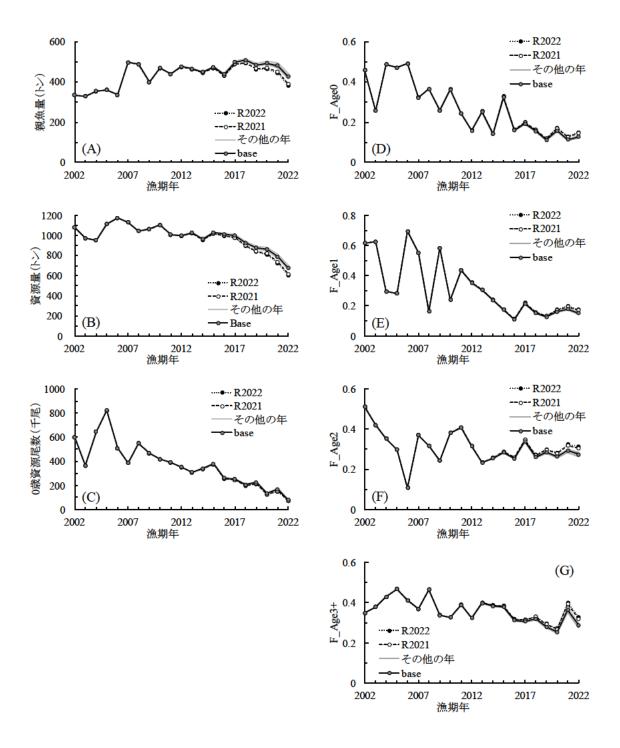
VPA 結果のレトロスペクティブ解析の結果を補足図 4-8 に示す。Mohn's rho の値は、チューニングなしのほうがチューニングありの場合よりも 0 に近似したが、チューニングなしでは、2021 年漁期の値のみ、その他の年のトレンドとは大きくずれているため、数値上 rho は 0 に近似しているが、実際には大きな外れ年が生じる。これに対し、チューニングありでは、rho は概ね- $0.3\sim0.5$ 程度と昨年度と同様の傾向にあることから、チューニングありのほうがより安定した資源量推定をしたと考えられる。ブートストラップ信頼区間推定の結果でも、親魚量、資源量、0 歳資源尾数のいずれにおいても昨年度と同様の結果であった(補足図 4-9)。


以上の検討結果からは、本年度評価においても、2009 年からのチューニングを行うことで、最も残差が小さく、1 歳魚資源尾数と資源量指標値の相関も高く、また、得られた結果の信頼区間も小さく、データの過大評価、過小評価ともに軽減すると考えられた。なおチューニングなしの場合の VPA 計算結果は、本補足資料の参考資料として参考資料 4 に示した。

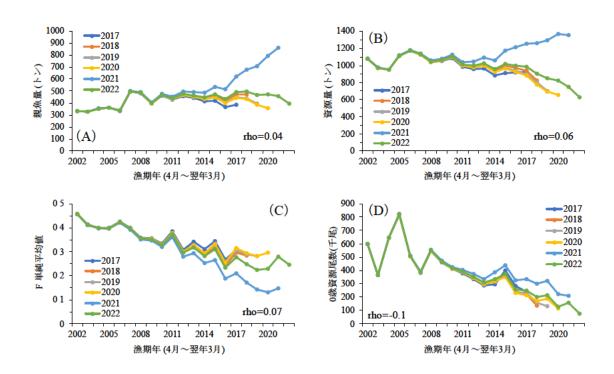
補足図 4-1. 九州・山口北西海域とらふぐはえ縄漁獲成績報告書から抽出した、日本海中西部・東シナ海におけるはえ縄の資源量指標値 (A):過去の資源評価票において提示してきた漁獲努力量(針数)と単純 CPUE、重量単位。(B):尾数単位での単純CPUEと加重 CPUE。単位(尾/隻・日)。(C):全年齢と1歳魚の加重 CPUEの比較。単位(尾/隻・日)。(D):1歳魚の加重 CPUEと単純 CPUEの比較。単位(尾/隻・日)。


補足図 4-2. 大分県の漁協船別取扱量から抽出した、伊予灘以西・豊予海峡以北における、はえ縄の資源量指標値 (A):漁獲努力量(延べ取扱隻数)と単純 CPUE (全年齢)、単位 (kg/隻・日)。(B):単純 CPUE と加重 CPUE (全年齢)の比較。単位 (kg/隻・日)。(C):全年齢と 1 歳魚の加重 CPUE の比較。単位 (kg/隻・日)。(D):1 歳魚の加重 CPUE と単純 CPUE の比較。単位 (尾/隻・日)。

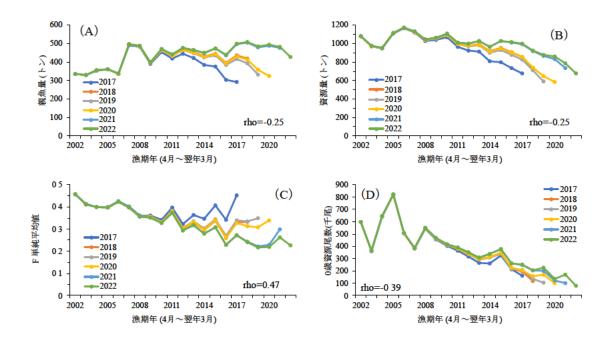
補足図 4-3. 大分県の漁協船別取扱量から抽出した、伊予灘以西・豊予海峡以南における、 釣りの資源量指標値 (A):漁獲努力量(延べ取扱隻数)と単純 CPUE(全年齢)、単位(kg/隻・日)。(B):単純 CPUEと加重 CPUE(全年齢)の比較。単位(kg/隻・日)。 (C):全年齢と 1歳魚の加重 CPUEの比較。単位(kg/隻・日)。(D):1歳魚の加重 CPUEと単純 CPUEの比較。単位(尾/隻・日)。

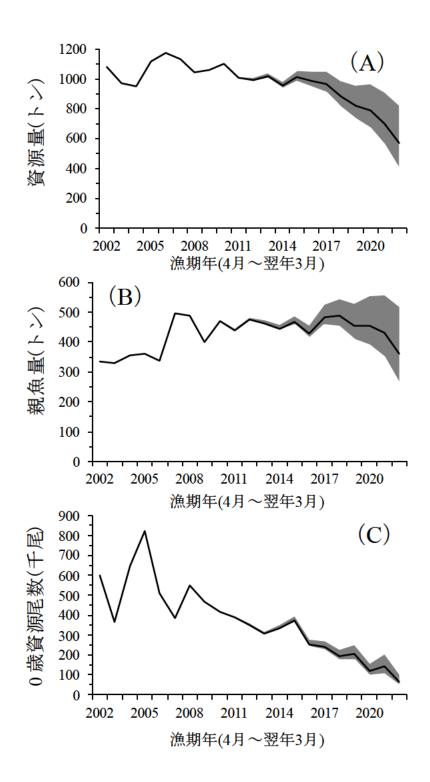


補足図 4-4. 3 海域の 1 歳資源量指標値を各海域の 1 歳漁獲尾数で加重平均した、3 海域統合 1 歳資源量指標値



補足図 4-5. 1 歳魚資源量指標値のモデル診断


(A) 残差プロット、(B) 指標値と予測値、(C) 1 歳資源尾数との相関。残差プロットのダークグレーは80%信頼区間、ライトグレーは95%信頼区間を示す。


補足図 4-6. チューニング VPA 結果におけるジャックナイフ法によるチューニング指標値の影響解析結果 Base は各年の指標値を全て使用した場合。R2021、R2022 は、2021、2022 年漁期ぞれぞれの指標値を除外した場合。「その他の年」はBaseデータから大きな変化がない年を同一色で示した。(A):親魚量(単位:トン)、(B):資源量(単位:トン)、(C):0歳資源尾数(単位:千尾)、(D):0歳 F、(E):1歳 F、(F):2歳 F、(G):3歳以上 F。

補足図 4-7. チューニングなし VPA 結果におけるレトロスペクティブ解析結果 (A) 親魚 量、(B) 資源量、(C) F 単純平均値、(D) 0 歳資源尾数。

補足図 4-8. 2005 年以降、1 歳魚資源量指標値を用いてチューニングした場合の VPA 結果 におけるレトロスペクティブ解析結果 (A) 親魚量、(B) 資源量、(C) F 単純平均値、 (D) 0 歳資源尾数。

補足図 4-9. チューニング VPA より得られた (A) 資源量、(B) 親魚量、(C) 0 歳資源尾数に対するブートストラップ信頼区間推定結果 グレーの範囲は 95%信頼区間を示す。

補足表 4-1. トラフグ日本海・東シナ海・瀬戸内海系群における年齢別漁獲尾数算出海域 ごとの資源量指標値一覧

———— 年	F齢別漁獲尾数			年齢		
:	算出海域区分	0	1	2	3	4+
瀬	燧灘以東	Δ	×	0	0	0
戸 内	豊予以北	0	0	0	0	0
海	豊予以南	0	0	0	0	0
	日本海北部	×	×	×	×	×
日本	毎中西部・東シナ海	_	0	0	0	0
	関門海峡	_	_	Δ	Δ	Δ
	有明海	Δ	_	×	×	×

	∓齢別漁獲尾数 算出海域区分	備考
瀬	燧灘以東	○は2008年~一部の産卵場の有漁漁獲の取扱データはある。△は2016年~収集中。
戸 内	豊予以北	2007年~有漁漁獲の取扱データはある。秋冬中心
海	豊予以南	2007年~有漁漁獲の取扱データはある。秋冬中心
	日本海北部	
日本	海中西部・東シナ海	2005年~九州山口北西海域漁獲成績報告書、秋冬
	関門海峡	2014年~、収集中。春、産卵期
	有明海	2017年~、一部収集中、2021年~海域を拡大。秋

 $[\]circ:10$ 年以上に渡って、取扱記録がある。 $\triangle:10$ 年未満ではあるが、一部の取扱記録がある。 $\mathbf{X}:$ 取扱記録がない。-:現在、ほぼ漁獲対象となっていない。

補足表 4-2. 年齢別漁獲尾数算定海域ごとの各年齢の漁獲尾数の割合(%) 豊予南北+外海は、豊予以北、豊予以南、日本海中西部・東シナ 海海域(外海)の合計割合(%)を示す。

0才	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	単純平均
燧灘以東	17	6	15	30	18	8	18	8	25	7	14	6	16	2	19	18	22	31	17	10	18	16
豊予以北	58	41	26	30	13	24	30	13	31	25	22	21	13	20	30	25	23	32	31	10	25	26
豊予以南	1	2	0	4	0	2	3	3	2	11	2	11	0	0	2	1	0	2	1	1	8	3
日本海北部		-	-		-	0	0	3	3	3	6	7	18	1	2	0	5	/	1	0	0	4
日本海中西部・東シナ海	5	2	0	1	2	1	2	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
関門海峡													0	0	0	0	0	0	0	0	0	0
有明海	20	49	58	36	67	66	47	72	38	53	55	54	52	76	47	55	50	29	51	78	47	52
1才	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	単純平均
燧灘以東	10	6	2	6	6	14	14	8	6	17	3	5	2	4	4	2	4	7	6	3	7	6
豊予以北	39	48	43	26	39	45	38	37	26	32	33	38	43	14	22	30	22	25	36	14	22	32
豊予以南	11	11	16	12	19	13	15	25	20	21	16	24	25	10	17	23	27	29	34	25	14	19
日本海北部	_	_	_	_	_	1	7	2	2	14	9	1	2	7	6	1	5	9	3	4	5	5
日本海中西部・東シナ海	40	36	38	57	36	27	26	28	46	16	39	32	27	66	51	45	41	30	21	54	52	38
関門海峡	_	_	_	_	_	_	_	_	_	_	_	_	0	0	0	0	0	0	0	0	0	0
有明海	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>豊予南北+外海</u>	90	94	98	94	94	85	79	90	92	70	88	94	96	89	90	97	91	84	91	94	88	90
2才	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	 単純平均
<u></u>	11	19	8	11	18	13	14	10	17	4	7	4	9	6	5	3	4	1	7	3	4	9
豊予以北	6	10	9	15	19	11	17	16	11	3	12	4	3	11	10	5	6	7	8	8	6	9
豊予以南	8	19	7	8	12	4	3	5	10	2	6	6	6	9	12	7	10	14	9	11	15	9
日本海北部	_	_	_ ′	_	_ '-	3	7	6	5	2	7	7	5	7	6	4	3	4	3	3	5	5
日本海中西部・東シナ海	75	50	73	65	48	62	51	57	52	86	65	68	71	59	62	69	68	65	66	72	66	64
関門海峡	_	_	_	_	_		_	_	_	_	_	_	2	1	1	2	3	6	1	2	1	2
有明海	0	1	4	1	3	8	7	5	4	4	4	11	6	7	4	9	5	2	7	1	3	5
豊予南北+外海	88	79	88	88	79	77	72	79	73	91	83	78	79	79	84	82	84	86	82	91	87	82
3才	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	単純平均
<u> </u>	50	25	31	25	18	19	16	12	4	7	2012	9	4	3	2010	5	3	5	2020	6	8	<u> </u>
豊予以北	8	10	10	25 5	4	10	5	5	5	7	5	4	10	4	7	5	3	J 4	6	6	3	12
豊予以南	4	5	3	2	4	9	<i>J</i>	5	11	4	16	5	7	6	7	5 5	5	7	7	8	10	6
日本海北部	_ ~				_ ~	2	2	1	4	4	4	7	5	3	4	6	5	8	3	6	9	5
日本海中西部・東シナ海	32	53	52	61	63	45	53	48	58	53	50	60	55	70	65	66	55	57	63	70	55	56
関門海峡	_ 52	_	_ 52	_	_	_	_	_	_	_	_	_	2	5	2	2	1	8	4	1	2	3
有明海	5	8	3	7	11	14	20	27	19	24	22	15	17	10	12	11	27	10	15	4	13	14
豊予南北+外海	44	67	66	68	72	65	62	58	73	64	72	68	72	80	80	76	63	69	76	83	68	69
4才以上	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	単純平均
	45	39	30	46	45	19	54	36	18	33	18	30	17	13	16	13	9	7	10	6	7	24
豊予以北	11	15	11	8	7	7	5	6	5	7	5	5	6	4	6	5	5	3	5	3	6	6
豊予以南	6	4	6	2	7	6	2	4	3	7	8	4	4	12	5	5	7	3	6	4	9	5
日本海北部	_	_	_	_	_	5	3	6	10	5	9	6	13	7	8	7	8	10	7	6	9	8
日本海中西部・東シナ海	30	37	47	37	27	48	26	36	47	32	47	47	46	53	48	57	55	53	60	68	51	45
関門海峡	_	_		_	_			_					2	1	2	2	5	3	2	2	4	2
有明海	8	5	6	7	14	15	11	12	17	15	13	8	13	10	14	10	12	21	11	10	15	12
豊予南北+外海	48	56	64	46	41	61	32	46	55	46	60	56	55	69	60	68	66	59	71	75	66	57

補足表 4-3. 九州・山口北西海域とらふぐはえ縄漁獲成績報告書から抽出した日本海中西部・東シナ海における資源量指標値(単純 CPUE、加重 CPUE の値(全年齢と 1 歳魚)) と 1歳 CPUE 抽出に用いた年齢別漁獲尾数の割合

	全年齢CPU	E(尾/隻・日)		年齢別	川漁獲尾数	の割合		1歳魚CPUE(尾/隻・日)		
	単純	加重	0歳	1歳	2歳	3歳	4歳+	単純	加重	
2005	13.0	29.1	0.032	0.502	0.220	0.165	0.081	6.5	14.6	
2006	12.6	20.8	0.030	0.726	0.079	0.117	0.048	9.1	15.1	
2007	12.9	21.3	0.007	0.345	0.328	0.197	0.123	4.5	7.3	
2008	7.8	12.3	0.068	0.193	0.314	0.268	0.157	1.5	2.4	
2009	13.1	23.0	0.004	0.526	0.251	0.097	0.122	6.9	12.1	
2010	14.5	28.0	0.001	0.397	0.279	0.188	0.135	5.7	11.1	
2011	14.6	26.0	0.001	0.152	0.589	0.137	0.121	2.2	3.9	
2012	14.1	23.1	0.003	0.388	0.277	0.172	0.160	5.5	9.0	
2013	16.8	30.2	0.002	0.297	0.279	0.190	0.232	5.0	9.0	
2014	13.3	24.1	0.002	0.183	0.361	0.241	0.212	2.4	4.4	
2015	15.3	25.3	0.016	0.323	0.225	0.238	0.198	4.9	8.2	
2016	13.7	21.8	0.001	0.201	0.369	0.216	0.213	2.8	4.4	
2017	18.6	26.3	0.001	0.202	0.400	0.214	0.184	3.7	5.3	
2018	15.8	23.2	0.000	0.172	0.315	0.230	0.283	2.7	4.0	
2019	11.8	19.3	0.000	0.108	0.386	0.203	0.302	1.3	2.1	
2020	15.4	28.5	0.001	0.110	0.344	0.234	0.311	1.7	3.1	
2021	21.3	32.2	0.000	0.108	0.336	0.205	0.351	2.3	3.5	
2022	13.4	18.5	0.001	0.211	0.272	0.235	0.281	2.8	3.9	

補足表 4-4. 大分県の漁協船別取扱量から抽出した、伊予灘以西・豊予海峡以北における 資源量指標値(単純 CPUE、加重 CPUE の値(全年齢と1歳魚))と1歳 CPUE 抽出に 用いた年齢別漁獲尾数の割合と尾数換算に用いた1歳魚平均体重

	全年齢CPU	E(尾/隻•日)		年齢	別漁獲量の	割合		1歳魚	1歳魚CPUE	(尾/隻・日)
	単純	加重	0歳	1歳	2歳	3歳	4歳+	平均体重(g)	単純	加重
2005	_	_	_	_	_	_	_	_	_	_
2006	_	_	_	_	_	_	_	_	_	_
2007	9.9	24.2	0.208	0.505	0.146	0.091	0.050	991	5.1	12.3
2008	8.0	12.8	0.553	0.186	0.113	0.065	0.083	1,175	1.3	2.0
2009	10.8	13.6	0.128	0.601	0.207	0.031	0.033	1,055	6.1	7.8
2010	7.3	10.9	0.364	0.495	0.094	0.015	0.032	1,063	3.4	5.1
2011	7.7	12.0	0.278	0.569	0.078	0.038	0.037	928	4.7	7.3
2012	6.0	7.9	0.297	0.476	0.117	0.068	0.042	1,062	2.7	3.5
2013	9.7	10.6	0.283	0.528	0.072	0.025	0.093	1,027	5.0	5.4
2014	12.7	14.3	0.162	0.443	0.250	0.077	0.068	1,138	4.9	5.6
2015	14.5	18.3	0.378	0.336	0.180	0.058	0.049	1,062	4.6	5.8
2016	11.2	13.3	0.468	0.166	0.157	0.087	0.122	1,089	1.7	2.0
2017	10.1	12.0	0.203	0.390	0.222	0.069	0.117	1,107	3.6	4.2
2018	10.1	12.2	0.228	0.260	0.212	0.111	0.189	1,058	2.5	3.0
2019	10.7	13.5	0.207	0.320	0.338	0.055	0.080	1,158	3.0	3.7
2020	12.6	14.2	0.114	0.540	0.182	0.061	0.102	1,233	5.5	6.2
2021	9.2	11.7	0.124	0.376	0.092	0.188	0.220	1,270	2.7	3.5
2022	9.5	11.8	0.152	0.234	0.272	0.140	0.202	1,240	1.8	2.2

補足表 4-5. 大分県の漁協船別取扱量から抽出した、伊予灘以西・豊予海峡以南における 資源量指標値(単純 CPUE、加重 CPUE の値(全年齢と 1 歳魚))と 1 歳 CPUE 抽出に 用いた年齢別漁獲尾数の割合と尾数換算に用いた 1 歳魚平均体重

	全年齢CPU	E(尾/隻·目)		年齢	別漁獲量の	割合		1歳魚	1歳魚CPUE	(尾/隻•日)
	単純	加重	0歳	1歳	2歳	3歳	4歳+	平均体重(g)	単純	加重
2005	_	_	_	_	_	_	_	_	_	_
2006	_	_	_	_	_	_	_	_	_	_
2007	3.0	3.9	0.172	0.336	0.088	0.249	0.154	1,252	0.8	1.1
2008	2.3	2.3	0.176	0.322	0.094	0.244	0.164	1,239	0.6	0.6
2009	2.3	2.7	0.050	0.788	0.086	0.011	0.065	1,180	1.6	1.8
2010	2.4	2.5	0.037	0.528	0.185	0.177	0.073	1,197	1.0	1.1
2011	2.3	2.5	0.190	0.531	0.096	0.099	0.083	1,050	1.2	1.3
2012	2.8	3.0	0.017	0.346	0.086	0.319	0.231	983	1.0	1.0
2013	2.4	2.5	0.128	0.585	0.115	0.072	0.100	1,023	1.4	1.4
2014	3.0	3.2	0.000	0.602	0.098	0.179	0.121	1,242	1.4	1.6
2015	2.8	3.0	0.003	0.177	0.194	0.104	0.522	1,159	0.4	0.5
2016	2.7	2.7	0.040	0.260	0.432	0.134	0.134	1,156	0.6	0.6
2017	2.8	3.0	0.048	0.516	0.158	0.081	0.197	1,176	1.2	1.3
2018	2.9	3.1	0.001	0.425	0.209	0.114	0.251	1,192	1.0	1.1
2019	2.7	2.8	0.020	0.459	0.207	0.179	0.134	1,312	0.9	1.0
2020	3.3	3.6	0.006	0.528	0.132	0.121	0.212	1,292	1.4	1.5
2021	3.4	3.8	0.011	0.194	0.360	0.207	0.228	1,201	0.6	0.6
2022	2.9	3.0	0.000	0.062	0.323	0.204	0.411	1,219	0.1	0.2

補足表 4-6. 3 海域統合 1 歳資源量指標値の算出に用いた各海域の 1 歳資源量指標値と各 海域の 1 歳漁獲尾数

	海域別1歳	魚資源量指	標値	海域別1	歳魚漁獲尾	数			
漁期年	日本海中西部・ 東シナ海	豊予以北	豊予以南	日本海中西部・ 東シナ海	豊予以北	豊予以南	加重対象漁獲尾数	加重平均	
2005	14.6	_	_	40,402	_	_	40,402	14.6	
2006	15.1	_	_	65,779	_	_	65,779	15.1	
2007	7.3	12.3	1.1	24,288	33,873	10,162	68,323	8.9	
2008	2.4	2.0	0.6	6,862	7,766	4,081	18,709	1.8	
2009	12.1	7.8	1.8	32,480	33,745	26,721	92,946	7.6	
2010	11.1	5.1	1.1	25,604	12,582	10,447	48,633	7.4	
2011	3.9	7.3	1.3	12,025	21,054	14,535	47,615	4.6	
2012	9.0	3.5	1.0	26,148	12,944	8,030	47,122	6.1	
2013	9.0	5.4	1.4	18,561	15,983	12,102	46,646	5.8	
2014	4.4	5.6	1.6	10,130	13,074	8,631	31,835	4.1	
2015	8.2	5.8	0.5	22,442	4,382	3,404	30,227	7.0	
2016	4.4	2.0	0.6	10,527	4,219	3,417	18,163	3.1	
2017	5.3	4.2	1.3	14,041	6,071	6,196	26,308	4.1	
2018	4.0	3.0	1.1	8,748	3,671	4,832	17,251	3.0	
2019	2.1	3.7	1.0	4,388	2,955	4,052	11,395	2.1	
2020	3.1	6.2	1.5	5,009	3,329	6,035	14,374	3.1	
2021	3.5	3.5	0.6	5,417	1,638	3,671	10,725	2.5	
2022	3.9	2.2	0.2	6,316	2,336	1,508	10,160	3.0	

[※]加重平均が3海域統合1歳資源量指標値になる。

参考資料 4-1. チューニングなしの場合のコホート解析結果

年齢別漁獲	尾数(尾)										
漁期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
0歳	200,599	75,185	226,822	281,185	180,156	97,151	153,115	97,026	115,909	76,832	46,958
1歳	131,443	128,544	52,720	71,444	187,537	96,477	31,038	123,015	56,229	75,195	66,599
2歳	53,466	41,207	34,148	30,712	17,536	45,033	27,712	29,224	38,380	54,067	28,911
3歳	14,626	19,675	21,410	23,518	23,178	36,680	29,190	16,578	23,026	20,727	23,095
4歳以上	21,962	21,593	24,294	24,859	21,308	21,025	37,474	25,120	22,558	29,586	22,822
計	422,096	286,204	359,395	431,718	429,716	296,367	278,528	290,964	256,102	256,406	188,384
年齢別漁獲	長数 (尾)										
漁期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
0歳	62,763	41,102	95,434	35,186	40,268	26,927	21,668	17,894	16,546	8,776	
1歳	57,693	37,129	34,534	20,944	31,416	21,386	15,427	21,962	13,723	15,473	
2歳	25,594	28,333	26,656	31,643	40,301	23,537	25,119	20,487	24,732	13,075	
3歳	19,948	24,097	23,987	16,913	22,492	21,236	14,990	13,332	16,114	14,105	
4歳以上	30,719	25,736	26,219	22,751	22,305	26,563	24,173	21,182	28,378	19,724	
計	196,716	156,397	206,829	127,437	156,782	119,649	101,377	94,857	99,492	71,153	
年齢別漁獲	1亿米/										
漁期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
0歳	0 46	0 26	0 49	0 47	0 49	0 32	0 37	0 26	0 36	0 24	0 16
1歳	0 62	0 63	0 30	0 28	0 69	0 55	0 16	0 58	0 24	0 44	0 35
2歳	0 51	0 42	0 35	0 30	0 11	0 37	0 32	0 24	0 38	0 41	0 32
3歳	0 35	0 38	0 43	0 47	0 41	0 37	0 47	0 34	0 33	0 39	0 32
4歳以上	0 35	0 38	0 43	0 47	0 41	0 37	0 47	0 34	0 33	0 39	0 32
単純平均	0 46	0 41	0 40	0 40	0 42	0 40	0 36	0 35	0 33	0 37	0 30
年齢別漁獲	係数										
漁期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
0歳	0 25	0 14	0 33	0 16	0 20	0 16	0 12	0 17	0 12	0 14	
1歳	0 31	0 24	0 18	0 11	0 22	0 16	0 13	0 17	0 19	0 16	
2歳	0 23	0 26	0 29	0 26	0 35	0 27	0 29	0 28	0 31	0 30	
3歳	0 40	0 39	0 38	0 32	0 31	0 33	0 29	0 27	0 39	0 31	
4歳以上	0 40	0 39	0 38	0 32	0 31	0 33	0 29	0 27	0 39	0 31	
単純平均	0 32	0 28	0 31	0 23	0 28	0 25	0 22	0 23	0 28	0 24	
年齢別資源	〔尾数(尾)										
漁期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
0歳	597,895	363,537	645,549	821,076	508,786	386,488	548,596	466,218	417,431	390,092	350,281
1歳	323,721	313,025	232,926	328,655	424,674	257,764	231,953	315,389	298,165	240,527	253,441
2歳	151,329	136,116	130,344	134,878	192,907	165,236	115,606	153,255	137,065	182,589	120,963
3歳	56,384	70,671	69,642	71,376	77,940	134,761	88,944	65,579	93,564	72,876	94,486
4歳以上	84,664	77,560	79,024	75,447	71,653	77,245	114,186	99,367	91,662	104,026	93,371
計	1,213,993	960,909	1,157,485	1,431,432	1,275,961	1,021,494	1,099,285	1,099,808	1,037,887	990,110	912,543
年齢別資源	· 尾数 (尾)										
漁期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
0歳	307,119	336,730	375,503	257,123	246,184	199,488	214,954	128,228	157,736	76,133	
1歳	247,638	197,465	241,734	224,410	181,125	167,429	140,864	158,474	90,012	115,703	
2歳	138,607	141,946	121,020	157,787	156,287	113,336	111,520	96,091	104,039	57,991	
3歳	68,692	85,361	85,544	70,726	94,960	86,151	67,494	64,685	56,756	59,199	
4歳以上	105,782	91,168	93,504	95,136	94,171	107,762	108,838	102,766	99,953	82,781	
計	867,838	852,669	917,305	805,182	772,727	674,166	643,670	550,243	508,495	391,807	

参考資料 4-1. チューニングなしの場合のコホート解析結果 (続き)

漁期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
0歳	176	111	160	181	102	99	129	88	90	86	8
1歳	340	328	220	359	443	277	247	350	333	226	245
2歳	227	205	217	213	292	257	179	226	213	256	195
3歳	108	138	143	151	153	272	180	141	200	146	195
4歳以上	227	191	212	211	184	225	308	258	270	294	281
計	1,079	973	951	1,115	1,174	1,130	1,044	1,063	1,105	1,008	996
年齢別資源量	(トン)										
漁期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
0歳	75	73	67	57	46	40	54	27	26	20	
歳	250	212	285	252	192	180	149	169	91	118	
2歳	234	227	197	258	253	186	176	156	172	96	
ß歳	144	175	183	150	204	180	141	135	121	122	
4歳以上	321	272	288	283	287	318	329	339	335	273	
計	1,023	959	1,019	1,001	982	904	849	826	746	629	
年齢別親魚量	(トン)										
漁期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
)歳	0	0	0	0	0	0	0	0	0	0	(
歳	0	0	0	0	0	0	0	0	0	0	(
2歳	0	0	0	0	0	0	0	0	0	0	(
3歳	108	138	143	151	153	272	180	141	200	146	195
4歳以上	227	191	212	211	184	225	308	258	270	294	281
計	335	329	355	362	337	497	488	399	469	440	476
年齢別親魚量	(トン)										
漁期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
0歳	0	0	0	0	0	0	0	0	0	0	
1歳	0	0	0	0	0	0	0	0	0	0	
2歳	0	0	0	0	0	0	0	0	0	0	
3歳	144	175	183	150	204	180	141	135	121	122	
4歳以上	321	272	288	283	287	318	329	339	335	273	
計	464	447	471	433	491	498	469	474	456	395	
年齢別平均体	重 (g)										
漁期年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
0歳	295	306	247	220	201	257	235	188	215	221	231
1歳	1,050	1,049	945	1,093	1,042	1,076	1,065	1,110	1,117	940	967
2歳	1,500	1,504	1,664	1,576	1,513	1,553	1,552	1,474	1,552	1,401	1,609
B歳	1,916	1,954	2,056	2,118	1,963	2,019	2,026	2,156	2,135	2,006	2,063
4歳以上	2,683	2,462	2,676	2,791	2,566	2,918	2,698	2,593	2,941	2,825	3,007
年齢別平均体	重 (g)										
漁期年	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
0.4E											

200

1,075

1,641

2,089

2,952

253

1,061

1,575

2,083

3,022

209

1,069

1,620

2,082

3,300

165

1,015

1,658

2,127

3,355

260

1,023

1,654

2,066

3,297

0歳

1歳

2歳

3歳

4歳以上

243

1,010

1,685

2,090

3,032

217

1,073

1,598

2,051

2,986

177

1,177

1,629

2,140

3,079

223

1,124

1,635

2,127

2,973

187

1,062

1,617

2,148

3,052

補足資料 5 全長階級別雌雄割合

 全長	4~	·7月	8~	 11月	12~翌	年3月
(mm)	雄	雌	雄	雌	雄	雌
100	_	_	0.38	0.63	_	_
110	_	_	0.48	0.52	_	_
120	_	_	0.51	0.49	_	_
130	_	_	0.48	0.52	_	_
140	_	_	0.44	0.56	_	_
150	_	_	0.42	0.58	_	_
160	_	_	0.48	0.52	_	_
170	_	_	0.48	0.52	0.00	1.00
180	_	_	0.44	0.56	0.25	0.75
190	1.00	0.00	0.45	0.55	0.62	0.38
200	0.00	1.00	0.55	0.45	0.58	0.43
210	0.50	0.50	0.52	0.48	0.52	0.48
220	0.33	0.67	0.47	0.53	0.56	0.44
230	0.50	0.50	0.49	0.51	0.52	0.48
240	0.33	0.67	0.50	0.50	0.52	0.48
250	0.71	0.29	0.40	0.60	0.51	0.49
260	0.50	0.50	0.49	0.51	0.54	0.46
270	0.38	0.62	0.41	0.59	0.50	0.50
280	0.63	0.38	0.50	0.50	0.45	0.55
290	1.00	0.00	0.50	0.50	0.35	0.65
300	0.33	0.67	1.00	0.00	0.52	0.48
310	0.88	0.13	0.50	0.50	0.31	0.69
320	0.75	0.25	0.80	0.20	0.55	0.45
330	0.61	0.39	1.00	0.00	0.17	0.83
340	0.56	0.44	0.60	0.40	0.50	0.50
350	0.63	0.37	0.25	0.75	0.42	0.58
360	0.69	0.31	0.45	0.55	0.46	0.54
370	0.71	0.29	0.58	0.42	0.56	0.44
380	0.72	0.28	0.58	0.42	0.54	0.46
390	0.84	0.16	0.33	0.67	0.57	0.43
400	0.84	0.16	0.42	0.58	0.55	0.45
410	0.83	0.17	0.52	0.48	0.56	0.44
420	0.82	0.18	0.59	0.41	0.52	0.48
430	0.80	0.20	0.73	0.27	0.57	0.43
440	0.76	0.24	0.63	0.38	0.48	0.52
450	0.71	0.29	0.30	0.70	0.42	0.58

[※]一の階級は、各期の全体の雌雄比を用いる。

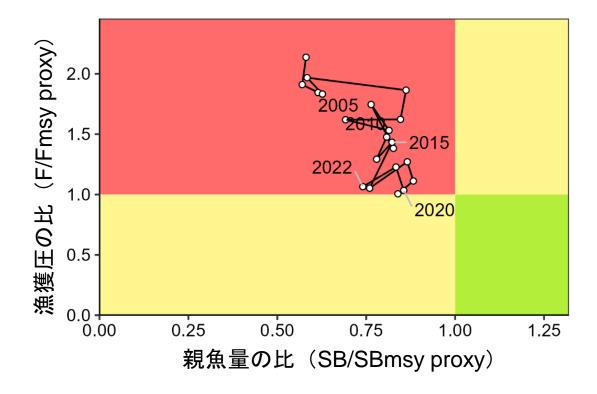
補足資料 5 全長階級別雌雄割合 (続き)

全長	4~	-7月	8~	11月	12~볼	翌年3月
(mm)	雄	雌	雄	雌	雄	雌
460	0.65	0.35	0.38	0.63	0.49	0.51
470	0.60	0.40	0.78	0.22	0.44	0.56
480	0.50	0.50	0.13	0.88	0.42	0.58
490	0.48	0.52	0.57	0.43	0.35	0.65
500	0.47	0.53	0.25	0.75	0.29	0.71
510	0.41	0.59	0.33	0.67	0.33	0.67
520	0.44	0.56	0.14	0.86	0.26	0.74
530	0.42	0.58	0.00	1.00	0.30	0.70
540	0.39	0.61	0.25	0.75	0.32	0.68
550	0.36	0.64	0.67	0.33	0.23	0.77
560	0.35	0.65	0.25	0.75	0.24	0.76
570	0.29	0.71	0.67	0.33	0.14	0.86
580	0.21	0.79	1.00	0.00	0.23	0.77
590	0.22	0.78	0.00	1.00	0.25	0.75
600	0.16	0.84	0.00	1.00	0.17	0.83
610	0.14	0.86	1.00	0.00	0.17	0.83
620	0.09	0.91	_	_	0.14	0.86
630	0.08	0.92	0.33	0.67	0.40	0.60
640	0.12	0.88	0.00	1.00	0.00	1.00
650	0.10	0.90	1.00	0.00	0.00	1.00
660	0.05	0.95	_	_	0.00	1.00
670	0.04	0.96	_	_	0.25	0.75
680	0.02	0.98	1.00	0.00	0.50	0.50
690	0.06	0.94	_	_	0.00	1.00
700	0.08	0.92	0.00	1.00	1.00	0.00
710	0.15	0.85	-	-	0.50	0.50
720	0.00	1.00	1.00	0.00	1.00	0.00
730	0.00	1.00	-	-	-	_
740	_	-	_	_	0.00	1.00
750	_	-	_	_	_	_
760	_	_	_	_	_	_
770	_	_	_	_	_	_
780	_	_	_	_	_	_
790	_	_	_	_	_	_
800	_	_	_	_	_	
測定数	7516	6469	1736	1904	2621	2944
全体雌雄比	0.54	0.46	0.48	0.52	0.47	0.53
> 0 /	H 11-11	A 11: = 11/6.1.1. A	3: III. >			

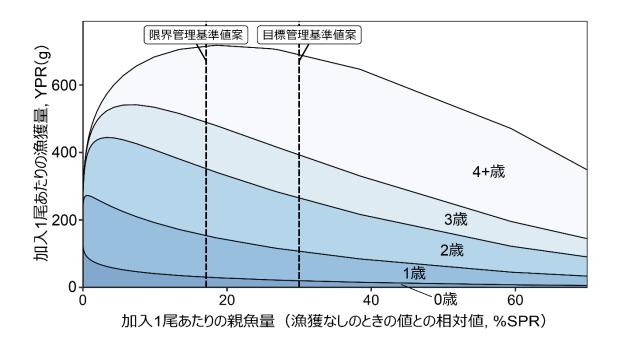
[※]一の階級は、各期の全体の雌雄比を用いる。

補足資料 6 管理基準値案と禁漁水準案等

令和 4 年 12 月に開催された「管理基準値等に関する研究機関会議」により、目標管理 基準値(SBtarget)には MSY 水準における親魚量の代替値(SBmsy proxy:577トン)、限 界管理基準値(SBlimit)には過去最低親魚量(SBmin:329トン)、禁漁水準(SBban)に は親魚量 0 トンを用いることが提案されている(平井ほか 2022、補足表 6-1)。


目標管理基準値案と MSY を実現する漁獲圧の代替値(Fmsy proxy)を基準にした神戸プロットを補足図 6-1 に示す。2022 年漁期の親魚量(SB2022:427トン)は目標管理基準値案を下回るが、限界管理基準値案および禁漁水準案は上回る。本系群の親魚量は資源評価期間を通じて SBmsy proxy を下回り、漁獲圧は Fmsy proxy よりも高い。

平衡状態における平均親魚量と年齢別平均漁獲量との関係を補足図 6-2 に示す。平均親 魚量が限界管理基準値以下では若齢魚の漁獲割合が増加する。しかし、親魚量が増加する につれて高齢魚の比率が高くなる傾向がみられる。


引用文献

平井慈恵・片町太輔・真鍋明弘 (2022) 令和 4 年度トラフグ日本海・東シナ海・瀬戸内海系 群の管理基準値等に関する研究機関会議資料. FRA-SA2022-BRP18-01, 水産研究・教育 機構, 91 pp.

 $https://www.fra.affrc.go.jp/shigen_hyoka/SCmeeting/2019-1/20221027/FRA-SA2022-BRP18-01.pdf$

補足図 6-1. 管理基準値案と親魚量・漁獲圧との関係(神戸プロット)

補足図 6-2. 平衡状態における加入 1 尾あたりの親魚量の漁獲がない時の親魚量に対する相対値 (%SPR) と加入 1 尾あたりの漁獲量 (YPR) の年齢別の関係 目標管理基準値案は F30%SPR であり、限界管理基準値案は SBmin (329 トン) の位置を示す。禁漁水準値案は 0 トンである。なお、漁業がなかった場合を仮定した初期親魚量 (SB0)は 1,923 トンである。

補足表 6-1. 管理基準値案と MSY の代替値

項目	値	説明
SBtarget 案	577トン	目標管理基準値案。最大持続生産量 MSY を実現する親魚 量の代替値(SBmsy proxy)。
SBlimit 案	329トン	限界管理基準値案。過去最低親魚量(SBmin)。
SBban 案	0トン	禁漁水準案
Fmsy proxy	(0歳,1歳,2	産量 MSY を実現する漁獲圧の代替値(漁獲係数 F) 歳, 3 歳, 4 歳以上) 0.25, 0.26, 0.26)
%SPR (Fmsy proxy)	30%	Fmsy proxy に対応する%SPR
MSY proxy	191トン	最大持続生産量 MSY の代替値

補足表 6-2. 最大持続生産量の代替値 MSY proxy を実現する水準の推定に用 たパラメータ値

	選択率 (注 1)	Fmsy proxy (注 2)	現状の漁獲圧 (F2018-2020) (注 3)	平均体重 (g) (注 4)	自然死亡 係数	成熟 割合
0歳	0.53	0.140	0.154	166	0.19	0
1歳	0.54	0.143	0.158	1,021	0.25	0
2歳	0.95	0.250	0.276	1,659	0.25	0
3 歳	1.00	0.264	0.291	2,126	0.25	1
4歳以上	1.00	0.264	0.291	3,348	0.25	1

注 1: 令和 4 年度研究機関会議で MSY を実現する水準の推定の際に使用した選択率。 選択率は 3 歳 F2018-2020 に対する比を示す。

注2: 令和4年度研究機関会議で推定された Fmsy の代替値。

注3: 令和4年度の資源評価で推定された2018~2020年漁期の平均値を直近年F平均として算出した。

注4: 平均体重は2021年漁期の値。

補足資料7 漁獲管理規則案に対応した将来予測

(1) 将来予測の方法

将来予測は、「令和 5 (2023) 年度 漁獲管理規則および ABC 算定のための基本指針 (FRA-SA2023-ABCWG02-01. 水産研究・教育機構 2023a)」の 1B 系資源の管理規則に従 い、令和 4 年 12 月に開催された「管理基準値等に関する研究機関会議」において最大持 続生産量MSY を実現するFの代替値(Fmsy proxy)の推定に用いた将来の加入の仮定(平 井ほか2023)と、補足表7-1に示した各種設定(自然死亡係数、成熟率、年齢別平均体重、 現状の漁獲圧)を使用して実施した。将来予測には加入量の不確実性を考慮し、近年の低 加入シナリオ(近年の低加入が3年間継続した後、徐々に加入が好転する仮定)のもとで の加入をバックワード・リサンプリングによって想定し、この仮定のもとで将来予測を行 った。昨年度時点から評価結果は更新されていることを考慮し、低加入シナリオでの将来 の加入量は、本年度評価において天然由来加入尾数として推定された 2002 年漁期~2021 年漁期の加入量に対数正規分布を仮定した場合の平均加入量を予測値として、過去の観測 値の残差をランダムにリサンプリングして与えた。リサンプリングするデータは3年単位 に区切り、低加入を仮定した 3 年ブロックのバックワード・リサンプリング (3 年を 1 ブ ロックとし、将来3年までは直近年を除く過去3年の残差からリサンプリング、将来4~ 6年は過去3年もしくは4~6年の残差をリサンプリングというように3年ごとに過去に遡 った残差を選択する方法)を実施した。無作為抽出した誤差を与える計算を 10,000 回行 い、平均値と 90%予測区間を求めることにより不確実性の程度を示した。2023 年漁期の 漁獲量は、予測される資源量と現状の漁獲圧(F2019-2021)から 2022 年漁期までの年齢 別資源尾数を用いて前進計算により推定した。現状の漁獲圧は今年度評価における 2019 ~2021 年の年齢別漁獲圧の平均値を用い(F2019-2021)、漁獲管理規則(HCR)に基づ く 2024 年漁期以降の漁獲圧には、各漁期年に予測される親魚量をもとに下記の漁獲管理 規則案で定められる漁獲圧を用いた。

加入シナリオの詳細は以下の通りである:

- ・将来予測の $1\sim3$ 年目($2023\sim2025$ 年漁期)は過去 3 年分($2019\sim2021$ 年漁期)の残差から重複を許してリサンプリングした。
- ・将来予測の $4\sim6$ 年目($2026\sim2028$ 年漁期)は過去 3 年分($2019\sim2021$ 年漁期)もしくは過去 $4\sim6$ 年分($2016\sim2018$ 年漁期)の残差のいずれかをランダムに選び、選んだ方の 3 年分の残差から重複を許してリサンプリングした。
- ・将来予測の7年目(2029年漁期)以降はこの手順で3年区切りの残差をリサンプリングする範囲を追加した。この手順により、短期的には直近の低加入トレンドを反映するような加入を想定し、中長期的にはそれ以前の過去の条件を反映するような加入を想定した。補足図7-1では、3年ずつに区切ったリサンプリング単位を色分けした枠線で示した。このようなリサンプリングのやり方により、短期的には直近の低加入トレンドを反映するような加入を想定し、中長期的にはそれ以前の過去の条件を反映するような加入を想定した。なお、バックワード・リサンプリングによる残差の平均値は年数が経過するにつれて0に近づく(補足図7-1)。加入尾数と資源尾数や漁獲量の予測計算には、「再生産関係の

推定・管理基準値計算・将来予測シミュレーションに関する技術ノート (FRA-SA2023-ABCWG02-04. 水産研究・教育機構 2023b)」に基づき、統計ソフトウェア R (version 4.3.0) および計算パッケージ frasyr (コミット番号 91624e3) を用いた。

将来予測における1~3歳魚の資源尾数は以下の式で求めた。

(Na,y: y 年の a 歳の資源尾数、M:自然死亡係数、F:漁獲係数)

$$N_{a,y} = N_{a-1,y-1} \exp(-M_{a-1} - F_{a-1,y-1}) \qquad (a = 1,2,3)$$
(18)

4歳魚以上のプラスグループの資源尾数は以下の式で求めた。

$$N_{4+,y} = N_{3,y-1} \exp(-M_{3,y-1} - F_{3,y-1}) + N_{4+,y-1} \exp(-M_{4+,y-1} - F_{4+,y-1})$$
(19)

将来予測における漁獲圧 (F) は1B系資源の漁獲管理規則に従い、以下の式で求めた。

$$F_{a,y} = \begin{cases} 0 & \text{if } SB_t = SB_{ban} \\ \beta \gamma (SB_t) F_{msy \, proxy} & \text{if } SB_{ban} < SB_t < SB_{limit} \\ \beta F_{msy \, proxy} & \text{if } SB_t \ge SB_{limit} \end{cases} \tag{20}$$

$$\gamma(SB_y) = \frac{SB_y}{SB_{limit}} \tag{21}$$

ここで、SByはy年の親魚量、FmsyおよびSBtarget、SBlimit、SBbanはそれぞれ補足表 6-1 に案として示した親魚量の基準値である。

また、将来の y 年漁期の各年齢 a の漁獲尾数 (Ca,y: y 年の a 歳の漁獲尾数) は以下の式で求めた。

$$C_{a,y} = N_{a,y} \left(1 - \exp\left(-F_{a,y}\right) \right) \exp\left(-\frac{M_a}{2}\right)$$
(22)

将来予測における資源量および漁獲量は、ここで求めた資源尾数または漁獲尾数に補足表 7-1 の平均体重を乗じて求め、親魚量は 3 歳以上の資源量とした。

(2) 種苗放流の考慮も含めた加入シナリオの設定

本系群は栽培対象種であり種苗放流が継続的に行われており(表 4-2)、令和 4 年度トラフグ日本海・東シナ海・瀬戸内海系群の管理基準値等に関する研究機関会議資料(平井ほか 2002)においても、天然のみの加入、放流を考慮した加入の検討が行われている。本年度評価では、1 年更新された放流情報に基づき、以下の加入シナリオの元での将来予測を行った。

なお、令和4年度評価時では、天然のみの加入を仮定した場合、直近年の種苗放流も仮定しなかったが、実際には令和4年度は種苗放流が実施され、令和5年度も種苗放流計画が策定され、本評価時には種苗放流が実施されている見込みである。このことから、本年度評価では、天然のみの加入、放流込みの加入、それぞれの推定について、以下の5つの仮定を想定し、将来予測を行った。

<天然のみの加入>

(仮定1) 2023年漁期の種苗放流を仮定せず、2024年漁期以降も種苗放流を仮定しない。 (令和4年度研究機関会議資料と同様に最直近年の種苗放流を仮定しない場合)

(仮定 2) 2023 年漁期の種苗放流を 2016~2020 年漁期の放流尾数、添加効率から仮定。

(放流尾数、添加効率の参照年が令和4年度研究機関会議での参照年数と同じ)

(仮定3) 2023 年漁期の種苗放流を 2017~2021 年漁期の放流尾数、添加効率から仮定。 (放流尾数、添加効率の参照年を1年スライドし、直近期間とした)

<放流を考慮した加入>

(仮定 4) 2023 年漁期の種苗放流を 2016~2020 年漁期の放流尾数、添加効率から一定の 放流加入を毎年仮定。

(放流尾数、添加効率の参照年が令和4年度研究機関会議での参照年数と同じ) (仮定5)2023年漁期の種苗放流を2017~2021年漁期の放流尾数、添加効率から一定の 放流加入を毎年仮定。

(放流尾数、添加効率の参照年を1年スライドし、直近期間とした)

仮定1は令和4年度研究機関会議資料と同様に再直近年(2023年漁期)の放流を仮定せず、2024年漁期以降も種苗放流を仮定しない場合である。仮定2は最直近年(本年度の場合、2023年漁期)は過去の放流尾数、添加効率から放流加入尾数を考慮することとし、研究機関会議案と同じ、2016年~2020年漁期の平均放流尾数(171.3万尾)、平均添加効率(0.033:本年度 VPA 結果に基づく放流資源尾数に対する値)から算出した5.6万尾を放流加入として加算し、これをベースケースとする。仮定3では、放流参照年を1年スライドした直近期間にあたる2017年~2021年漁期とした場合であり、同期間の平均放流尾数(163.9万尾)、平均添加効率(0.032)から算出した5.3万尾を2023年漁期の放流加入として加算したケースである。なお、放流の継続を仮定した場合(仮定4、仮定5)、2023年漁期も放流加入尾数は加算した予測が行われる。

加入尾数の推移を補足図 7-2 に示す。また、放流尾数を始めて参照する 2016 年漁期から 2034 年漁期までの各仮定における平均加入尾数を下表に示す。将来予測を開始する 2023 年漁期の加入尾数は最初のバックワード 3 年間は種苗放流の考慮をしない場合、11.1

万尾(仮定 1)、2023 年漁期の種苗放流を考慮した場合、2023 年漁期は 16.8 万尾(仮定 2:ベースケース)であった。これらの値は昨年度の予測よりもそれぞれ 0.1~0.4 万尾多い。これは 2021 年漁期や 2020 年漁期に上方修正された 0 歳資源尾数を反映していると考えられる。一方で、2026 年漁期以降の加入尾数は本年度評価のほうが昨年度評価よりも少ない尾数が推定された(補足図 7-2)。これは、近年の 0 歳資源尾数の推定が上方修正されたことにより、近年の残差が小さくなり、リサンプリングされやすくなったと考えられる(補足図 7-1)。このように資源評価の更新により、各年の加入尾数の推定精度が高まることで、近年の残差が小さくなり、結果として近年の低加入状況が将来予測に反映される。

本年度評価においてブロックバックワードリサンプリングにより推定した将来の平均 加入尾数 (千尾)

	, , , , , ,										
種苗放流 の考慮	加入の仮定	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
	昨年度評価	259	248	202	198	121	98	110	111	110	160
なし	仮定1	261	252	206	225	134	168	80	111	111	111
なし	仮定2	261	252	206	225	134	168	80	168	111	111
	仮定3	261	252	206	225	134	168	80	165	111	111
	昨年度評価	259	248	202	198	121	98	164	164	164	214
あり	仮定4	261	252	206	225	134	168	80	168	168	167
	仮定5	261	252	206	225	134	168	80	165	165	164
種苗放流 の考慮	加入の仮定	2026	2027	2028	2029	2030	2031	2032	2033	2034	-
	昨年度評価	161	160	174	173	174	196	196	195	219	_
なし	仮定1	135	135	135	167	168	168	182	182	183	-
<i>なし</i>	仮定2	135	135	135	167	168	168	182	182	183	
						4.50	4.50	100	400	400	
	仮定3	135	135	135	167	168	168	182	182	183	_
	仮定3 昨年度評価	135 215	135 214	135 227	167 227	226	248	248	248	275	-
あり											

(3) 漁獲管理規則案

漁獲管理規則案は、目標管理基準値案以上に親魚量を維持・回復する達成確率を勘案 して、親魚量に対応した漁獲圧(F)等を定めたものである。「漁獲管理規則および ABC 算定のための基本指針」では、親魚量が限界管理基準値案を下回った場合には禁漁水準案 まで直線的に漁獲圧を削減するとともに、親魚量が限界管理基準値以上にある場合には Fmsy proxy に調整係数 β を乗じた値を漁獲圧の上限とするものを提示している。補足図 7-3 に本系群の「管理基準値等に関する研究機関会議」により提案された漁獲管理規則を示 す。ここでは例として調整係数 β を 0.7 とした場合を示した。提案する漁獲管理規則は、 限界管理基準値案および禁漁水準案となる親魚量を閾値として漁獲管理の基礎となる漁獲 係数(F 値)を変えるルールであり、親魚量が限界管理基準値案を下回ると禁漁水準案ま で直線的に漁獲圧を下げることを定めている。F値の上限は Fmsy に調整係数 β を乗じた ものである。限界管理基準値案および禁漁水準案に標準値を用いた場合(すなわち、 SBlimit は SBmin、SBban は 0 トンの場合) の漁獲管理規則案における親魚量と漁獲係数 の関係を補足図 7-3a に示す。これらの漁獲管理規則案で漁獲した場合に期待できる平均 的な漁獲量との関係をそれぞれ補足図 7-3b に示す。図に例示した漁獲管理規則案は、い ずれもβに標準値である0.7を用いた。また、また、漁獲量の算出については、加入およ び選択率を将来予測と同じ仮定を用い、親魚量の大小に対応する漁獲圧で平衡状態までシ ミュレーションした時における年齢組成を用いた。なお、研究機関会議提案(2002 年~ 2021 年漁期までの加入尾数を参照)では天然のみの加入を仮定した場合「βが 0.5 以下で あれば、10年後に目標管理基準値案を 50%以上の確率で上回ると推定される」とされて おり、現状の放流(2016 年~2020 年漁期の平均放流加入尾数)を考慮した場合「β が 0.9 以下であれば、10年後に目標管理基準値案を50%以上の確率で上回ると推定される」と されている。

(4) 2024 年漁期の予測値

2023 年漁期の放流を研究機関会議案で参照した 2016 年~2020 年漁期の平均放流加入尾数を参照し、2024 年漁期以降、天然のみの加入を仮定した場合、漁獲管理規則案に基づき試算された 2024 年漁期の平均漁獲量は β を 0.7 とした場合には73 トン(補足表7-5b)、 β を 1.0 とした場合には101 トンであった(いずれも仮定 2、ベースケースの場合)。2024 年漁期に予測される親魚量は平均342 トンと見込まれ、限界管理基準値案である329 トンを上回った。

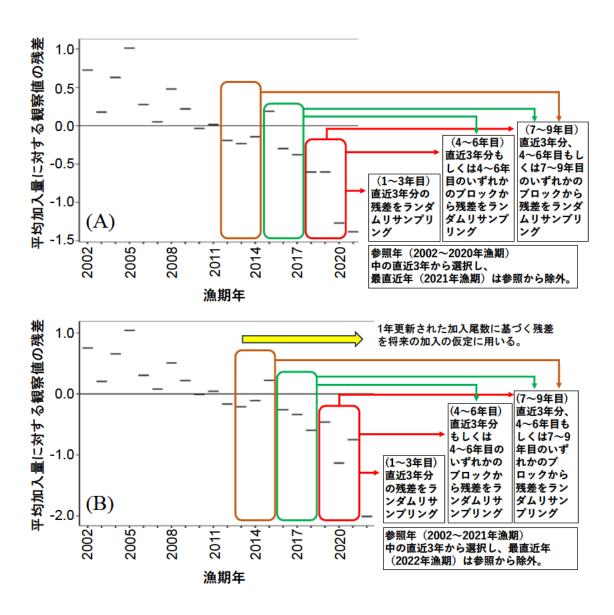
(5) 2025 年漁期以降の予測

2025年以降も含めた将来予測の結果を補足図7-4~8および補足表7-2~6に示す。

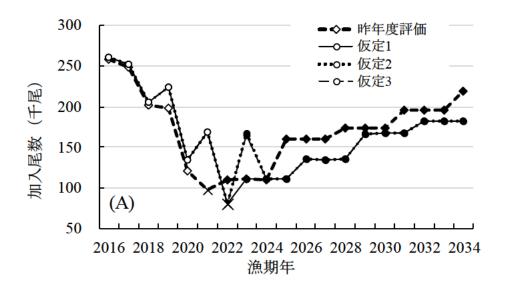
ベースケース(仮定 2、以下、同項の各仮定について「仮定 XX」として示す。)で漁獲管理規則案に基づく管理を 10 年間継続した場合、2034 年漁期の親魚量の予測値は β ϵ 0.7 とした場合には 443 トン(90%予測区間は 297~627 トン)であり、 β ϵ 1.0 とした場合には 351 トン(90%予測区間は 245~492 トン)である(補足図 7-5、補足表 7-4b、補足表 8-5)。予測値が 2034 年漁期に目標管理基準値案を上回る確率は β が 0.4 以下で 50%を上回る。予測値が 2034 年漁期に限界管理基準値案を上回る確率は β が 1.0 以下で 50%を上回

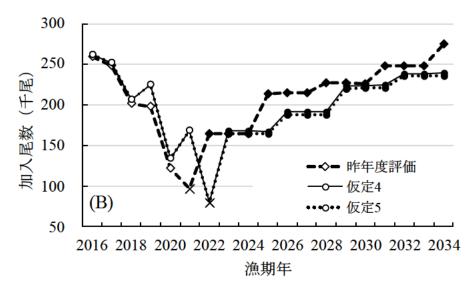
る。現状の漁獲圧(F2019-2021)を継続した場合の 2034 年漁期の親魚量の予測値は 300トン(90%予測区間は 189~437トン)であり目標管理基準値案を上回る確率は 0%、限界管理基準値案を上回る確率は 33%である。

漁獲管理規則案に基づく管理を継続した場合、平均親魚量が目標管理基準値案を 50%以上の確率で上回る漁期年は、ベースケース(仮定 2)では β を 0.7 とした場合には 2041 年漁期以降となると予測された。なお、2023 年漁期の放流加入を 2017~2021 年漁期の平均放流資源尾数から推定した場合(仮定 3)、平均親魚量が目標管理基準値案を 50%以上の確率で上回る漁期年は、 β を 0.7 とした場合、2041 年漁期以降と予測された。なお、種苗放流を考慮した場合、ベースケースと同じ 2016~2020 年漁期の放流加入尾数を仮定した場合(仮定 4)には、 β =0.7 のときに 2035 年漁期に目標管理基準値案を 50%以上の確率で上回る。また、放流加入尾数を直近年を含む 2017~2021 年漁期の放流加入尾数を仮定した場合(仮定 5)には、 β =0.7 のときに 2035 年漁期に目標管理基準値案を 50%以上の確率で上回る(補足表 7-2、補足表 8-6)。

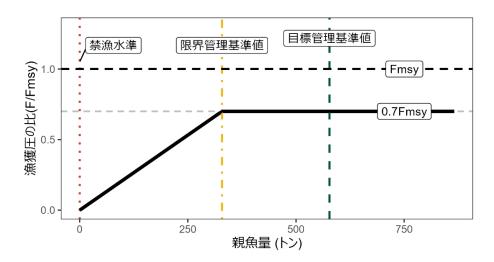

なお、仮定 2 では、 β =0.6 以上のとき、限界管理基準値案を少なくとも 1 年以上下回ることが予想され、 β =1.0 のとき、最大で平均親魚量は 8 年間下回ることが予想された(補足表 7-3、補足表 7-4、補足表 8-6)。また、現状の漁獲圧(F2019-2021)では、2034 年漁期までに平均親魚量は限界管理基準値案を上回ることはない。一方、種苗放流を考慮した場合には、 β =0.5~1.0 で限界管理基準値案を下回るがその期間は1~3年に短縮される(補足表 7-3、補足表 7-4、補足表 8-6)。また、現状の漁獲圧(F2019-2021)においても、親魚量が限界管理基準値案を下回るのは 5 年間に短縮される予測となる。なお、仮定 1(2023 年漁期の放流も仮定しない場合)では、 β =0.7 の時に、平均親魚量が限界管理基準値案を 50%以上の確率で上回るのは 2029 年漁期であり(補足表 7-3、補足表 7-4、補足表 8-6)、仮定 2 や仮定 3 では 2026 年漁期であることから(補足表 7-3、補足表 7-4、補足表 8-6)、実際の放流計画の実施を考慮すると仮定 1 は過小に加入を見積もる可能性が示唆されるため、今後はシナリオとして用いないことが妥当と考えられる。

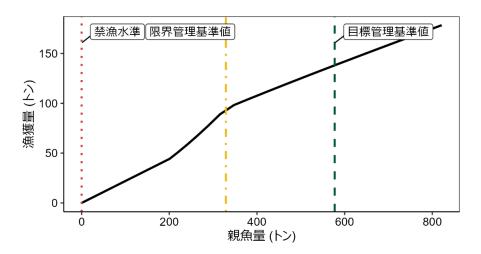
本系群では将来予測に用いる加入尾数は過去の加入尾数を参照しており、親魚量の再生産動態と関係なく、一定期間が過ぎれば過去の加入が再現されることが想定されている。しかしながら、実際の再生産環境では限界管理基準値案である過去最低親魚量を下回った場合の加入動態については未知である。このため現状の漁獲圧が続いた場合、過去最低親魚量を下回る親魚量となった場合に、当初の加入尾数が過去の加入尾数を必ずしも反映するとは言い難い。したがって、ブロックバックワードリサンプリングでは近年の低加入を再現することは可能であるが、20年、30年といった長期的な予測は、実際の親魚量や漁獲量の動態と乖離するおそれがある。このため、本系群では将来予測においては、毎年更新される資源評価結果から最新の加入尾数を考慮し、推定に用いる加入尾数をその高低に応じて毎年調整することで、短期的な将来予測を中心に運用する必要があると考えられる。


引用文献

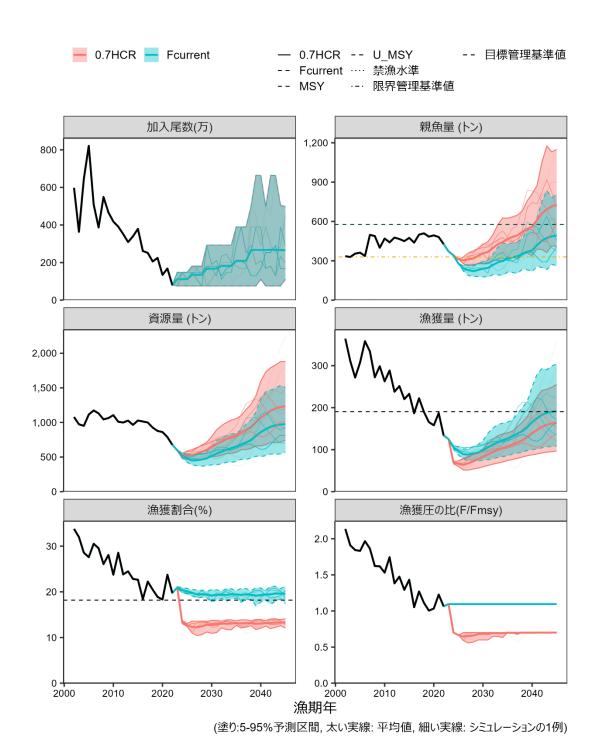

平井慈恵・片町太輔・真鍋明弘 (2022) 令和 4 年度トラフグ日本海・東シナ海・瀬戸内海系群の管理基準値等に関する研究機関会議資料. FRA-SA2022-BRP18-01, 水産研究・教育機構, 91 pp.

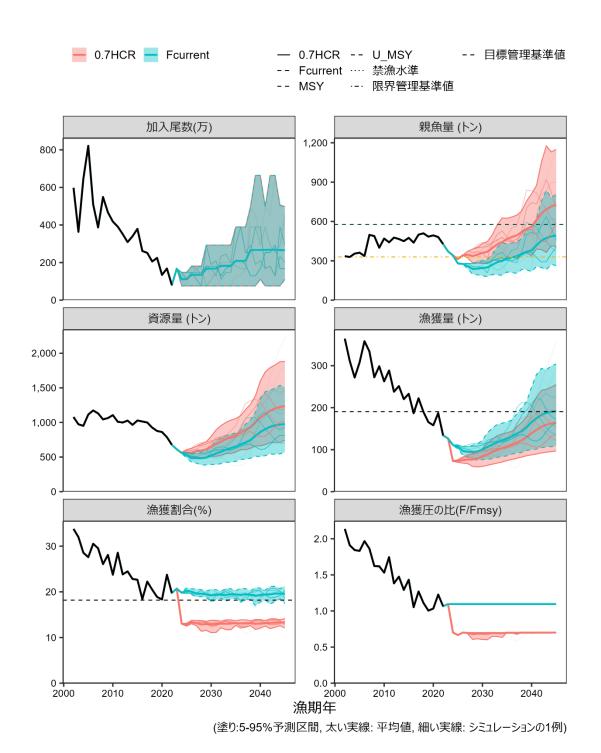
- $https://www.fra.affrc.go.jp/shigen_hyoka/SCmeeting/2019-1/20221027/FRA-SA2022-BRP18-01.pdf$
- 平井慈恵・片町太輔・真鍋明弘 (2023) 令和 4 年度トラフグ日本海・東シナ海・瀬戸内海系 群の資源評価. FRA-SA-2022-AC73, 令和 4 年度我が国周辺水域の漁業資源評価, 水産 庁・水産研究・教育機構, 78 pp.
 - $https://abchan.fra.go.jp/wpt/wp-content/uploads/2023/07/details_2022_73.pdf$
- 水産研究・教育機構 (2023a) 令和 5 (2023) 年度漁獲管理規則および ABC 算定のための基本指針. FRA-SA2023-ABCWG02-01, 水産研究・教育機構, 横浜, 23 pp. https://abchan.fra.go.jp/references_list/FRA-SA2023-ABCWG02-01.pdf (last accessed July 14 2023)
- 水産研究・教育機構 (2023b) 再生産関係の推定・管理基準値計算・将来予測シミュ ーションに関する技術ノート. FRA-SA2023-ABCWG02-04, 水産研究・教育機構, 横浜, 14 pp. https://abchan.fra.go.jp/references_list/FRA-SA2023-ABCWG02-04.pdf (last accessed July 14 2023)

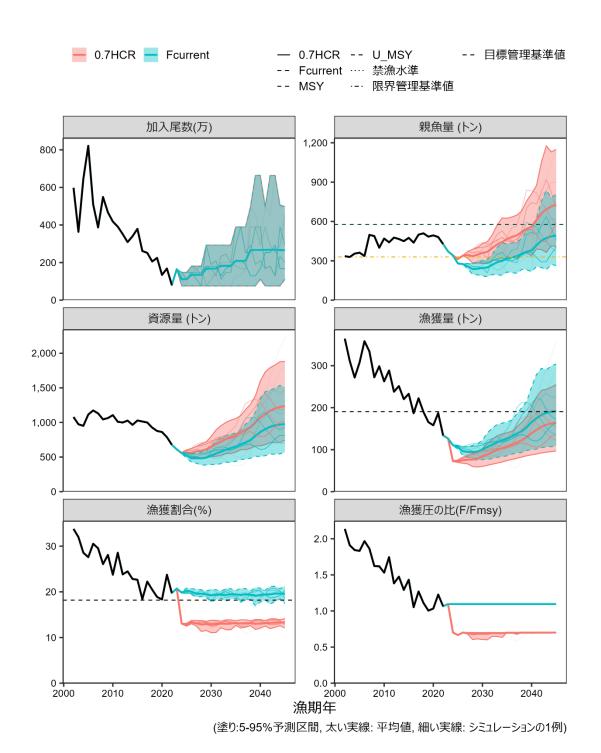

補足図 7-1. 将来予測における加入尾数の仮定に用いるブロックバックワードリサンプリングの模式図 (A)研究機関会議で提案された 2022 年漁期以降の将来予測に用いる加入尾数の残差 (参照年:2002~2020年漁期)、(B)本評価における、1年更新された加入尾数に基づく残差 (参照年:2002~2021年漁期)。本評価では最直近の 2022 年漁期を参照から除外し、2021年漁期以前について 3年ブロックで残差をランダムリサンプリングする。

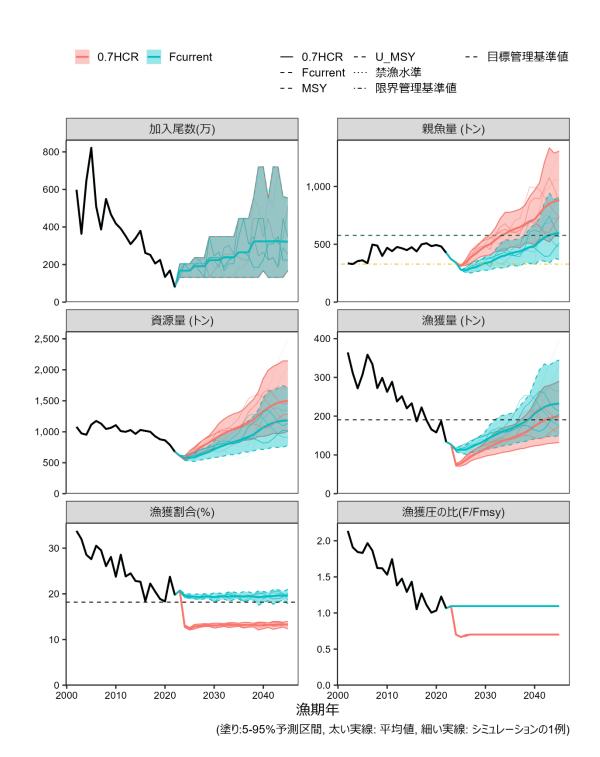


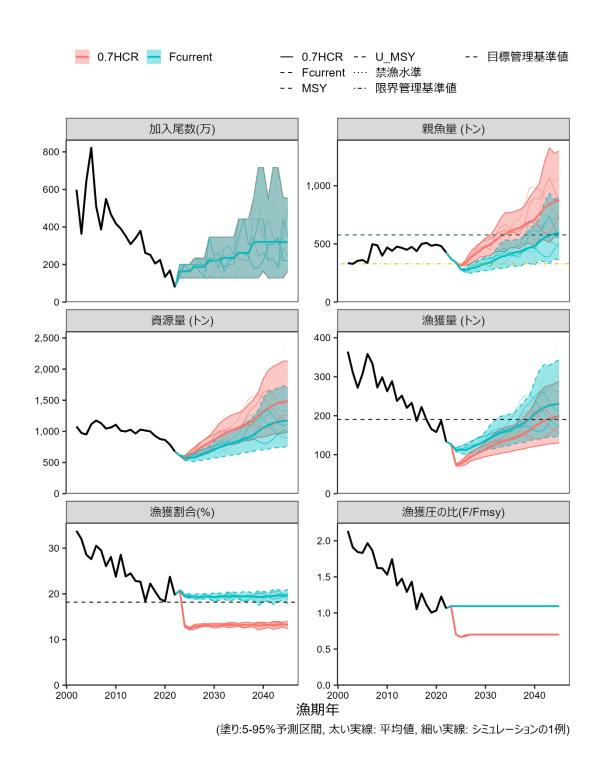
補足図 7-2. 将来予測における加入尾数の推定結果 (A) 天然のみによる加入を仮定した場合。(B) 放流込みでの加入を仮定した場合。○もしくは◇:参照した過去年データの一例(放流参照年(2016 年漁期)以降)、×:参照しなかった直近年、●もしくは◆:将来の予測値。各仮定は本文中参照。


a) 縦軸を漁獲圧にした場合


b) 縦軸を漁獲量にした場合


補足図 7-3. 漁獲管理規則


補足図 7-4. 漁獲管理規則案を用いた場合(赤線)と現状の漁獲圧での将来予測(青色) (2024 年漁期以降を天然のみの加入の場合、2023 年漁期も天然のみ加入を仮定した場合(仮定 1)) 太実線は平均値、網掛けはシミュ ーション結果の 90%が含まれる予測区間、細線は 5 通りの将来予測の例示である。親魚量の図の緑破線は目標管理基準値案、黄点線は限界管理基準値案、赤点線は禁漁水準案を示す。漁獲割合の図の破線は Umsy を示す。漁獲管理規則での調整係数 β には 0.7 を用いた。


補足図 7-5. 漁獲管理規則案を用いた場合(赤線)と現状の漁獲圧での将来予測(青色) (2024 年漁期以降を天然のみの加入の場合、2023 年漁期は、2016~2020 年漁期の平均放流加入尾数を仮定(仮定 2、本評価におけるベースケース)) 太実線は平均値、網掛けはシミュレーション結果の90%が含まれる予測区間、細線は5通りの将来予測の例示である。親魚量の図の緑破線は目標管理基準値案、黄点線は限界管理基準値案、赤点線は禁漁水準案を示す。漁獲割合の図の破線は Umsy を示す。漁獲管理規則での調整係数βには0.7を用いた。

補足図 7-6. 漁獲管理規則案を用いた場合(赤線)と現状の漁獲圧での将来予測(青色) (2024 年漁期以降を天然のみの加入の場合、2023 年漁期は、2017~2021 年漁期の平均放流加入尾数を仮定(仮定 3)) 太実線は平均値、網掛けはシミュレーション結果の90%が含まれる予測区間、細線は5通りの将来予測の例示である。親魚量の図の緑破線は目標管理基準値案、黄点線は限界管理基準値案、赤点線は禁漁水準案を示す。漁獲割合の図の破線はUmsyを示す。漁獲管理規則での調整係数βには0.7を用いた。

補足図 7-7. 漁獲管理規則案を用いた場合(赤線)と現状の漁獲圧での将来予測(青色) (2023 年漁期以降は、2016~2020 年漁期の平均放流加入尾数を仮定(仮定 4)) 太実線は平均値、網掛けはシミュ ーション結果の 90%が含まれる予測区間、細線は 5 通りの将来予測の例示である。親魚量の図の緑破線は目標管理基準値案、黄点線は限界管理基準値案、赤点線は禁漁水準案を示す。漁獲割合の図の破線は Umsy を示す。漁獲管理規則での調整係数βには 0.7 を用いた。

補足図 7-8. 漁獲管理規則案を用いた場合(赤線)と現状の漁獲圧での将来予測(青色) (2023年漁期以降は、2017~2021年漁期の平均放流加入尾数を仮定。(仮定 5)) 太実線は平均値、網掛けはシミュ ーション結果の 90%が含まれる予測区間、細線は 5 通りの将来予測の例示である。親魚量の図の緑破線は目標管理基準値案、黄点線は限界管理基準値案、赤点線は禁漁水準案を示す。漁獲割合の図の破線は Umsy を示す。漁獲管理規則での調整係数βには 0.7 を用いた。

補足表 7-1 将来予測に用いた設定値

	選択率	Fmsy proxy	F2019-2021	平均体重(g)	自然死亡	成熟
	(注1)	(注2)	(注3)	(注 4)	係数	割合
0歳	0.53	0.154	0.128	260	0.19	0
1歳	0.54	0.158	0.156	1,023	0.25	0
2歳	0.95	0.276	0.280	1,654	0.25	0
3 歳	1.00	0.291	0.299	2,066	0.25	1
4歳以上	1.00	0.291	0.299	3,297	0.25	1

- 注 1: 令和 4 年度研究機関会議で MSY を実現する水準の推定の際に使用した選択率。 選択率は 3 歳 F2018-2020 に対する比を示す。
- 注2: 令和4年度研究機関会議で推定されたFmsyの代替値。
- 注3: 今回の資源評価で推定された 2019~2021 年漁期の F 平均値。この F 値は 2023 年 漁期の漁獲量の仮定に使用した。
- 注4: 平均体重は2022年漁期の値。

補足表 7-2. 将来の親魚量が目標管理基準値案を上回る確率 (%)

<天然のみの加入の場合>

a) 2023年漁期も天然のみの加入を仮定。(仮定 1)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0.9	0	0	0	0	0	0	0	0	0	0	0	0	1
0.8	0	0	0	0	0	0	0	0	0	0	0	1	5
0.7	0	0	0	0	0	0	0	0	0	0	0	4	13
0.6	0	0	0	0	0	0	0	0	0	0	2	13	25
0.5	0	0	0	0	0	0	0	0	0	0	7	25	34
0.4	0	0	0	0	0	0	0	0	1	9	27	44	51
0.3	0	0	0	0	0	0	0	1	16	37	54	65	69
0.2	0	0	0	0	0	0	0	15	46	59	78	85	85
0.1	0	0	0	0	0	0	11	44	72	80	93	96	97
0	0	0	0	0	0	0	33	77	91	95	99	100	100
F2019-2021	0	0	0	0	0	0	0	0	0	0	0	0	0

b) 2023 年漁期は、2016~2020 年漁期の平均放流加入尾数を仮定。(仮定 2、本評価におけるベースケース)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0.9	0	0	0	0	0	0	0	0	0	0	0	0	1
0.8	0	0	0	0	0	0	0	0	0	0	0	1	5
0.7	0	0	0	0	0	0	0	0	0	0	0	4	13
0.6	0	0	0	0	0	0	0	0	0	0	2	13	25
0.5	0	0	0	0	0	0	0	0	0	0	9	26	35
0.4	0	0	0	0	0	0	0	0	2	14	30	46	52
0.3	0	0	0	0	0	0	0	4	26	43	58	68	70
0.2	0	0	0	0	0	0	11	30	57	64	81	87	87
0.1	0	0	0	0	0	0	33	65	82	86	95	97	97
0	0	0	0	0	0	34	67	91	96	98	100	100	100
F2019-2021	0	0	0	0	0	0	0	0	0	0	0	0	0

c) 2023 年漁期は、2017~2021 年漁期の平均放流加入尾数を仮定。(仮定 3)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0.9	0	0	0	0	0	0	0	0	0	0	0	0	1
0.8	0	0	0	0	0	0	0	0	0	0	0	1	5
0.7	0	0	0	0	0	0	0	0	0	0	0	4	13
0.6	0	0	0	0	0	0	0	0	0	0	2	13	25
0.5	0	0	0	0	0	0	0	0	0	0	9	26	35
0.4	0	0	0	0	0	0	0	0	2	14	30	46	52
0.3	0	0	0	0	0	0	0	4	24	43	58	68	70
0.2	0	0	0	0	0	0	11	30	57	64	81	87	87
0.1	0	0	0	0	0	0	33	65	81	86	95	97	97
0	0	0	0	0	0	34	67	91	96	98	100	100	100
F2019-2021	0	0	0	0	0	0	0	0	0	0	0	0	0

<放流による加入を考慮した場合>

d) 2023年漁期以降、2016~2020年漁期の平均放流加入尾数を仮定。(仮定4)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	0	0	0	0	0	0	0	0	0	0	0	2	7
0.9	0	0	0	0	0	0	0	0	0	0	1	10	21
0.8	0	0	0	0	0	0	0	0	0	0	6	23	32
0.7	0	0	0	0	0	0	0	0	0	8	27	43	50
0.6	0	0	0	0	0	0	0	1	20	41	59	68	71
0.5	0	0	0	0	0	0	0	20	55	66	86	90	90
0.4	0	0	0	0	0	0	15	61	84	90	98	99	99
0.3	0	0	0	0	0	0	48	91	98	100	100	100	100
0.2	0	0	0	0	0	11	81	99	100	100	100	100	100
0.1	0	0	0	0	0	44	96	100	100	100	100	100	100
0	0	0	0	0	0	67	100	100	100	100	100	100	100
F2019-2021	0	0	0	0	0	0	0	0	0	0	0	0	1

e) 2023 年漁期以降、2017~2021 年漁期の平均放流加入尾数を仮定。(仮定 5)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	0	0	0	0	0	0	0	0	0	0	0	2	6
0.9	0	0	0	0	0	0	0	0	0	0	0	9	19
0.8	0	0	0	0	0	0	0	0	0	0	5	21	31
0.7	0	0	0	0	0	0	0	0	0	5	22	39	47
0.6	0	0	0	0	0	0	0	1	15	37	54	65	68
0.5	0	0	0	0	0	0	0	16	50	62	82	87	87
0.4	0	0	0	0	0	0	11	54	79	87	97	98	98
0.3	0	0	0	0	0	0	41	86	97	99	100	100	100
0.2	0	0	0	0	0	11	78	99	100	100	100	100	100
0.1	0	0	0	0	0	33	96	100	100	100	100	100	100
0	0	0	0	0	0	67	100	100	100	100	100	100	100
F2019-2021	0	0	0	0	0	0	0	0	0	0	0	0	1

補足表 7-3. 将来の親魚量が限界管理基準値案を上回る確率 (%)

<天然のみの加入の場合>

a) 2023年漁期も天然のみの加入を仮定。(仮定 1)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	100	100	100	0	0	0	0	7	24	31	45	52	54
0.9	100	100	100	0	0	0	4	20	43	48	61	66	66
0.8	100	100	100	0	0	11	19	39	55	58	77	77	74
0.7	100	100	100	0	0	33	37	62	72	72	88	88	85
0.6	100	100	100	0	33	44	56	79	85	86	95	95	95
0.5	100	100	100	100	67	67	81	93	94	95	99	99	99
0.4	100	100	100	100	67	89	96	99	99	99	100	100	100
0.3	100	100	100	100	100	100	100	100	100	100	100	100	100
0.2	100	100	100	100	100	100	100	100	100	100	100	100	100
0.1	100	100	100	100	100	100	100	100	100	100	100	100	100
0	100	100	100	100	100	100	100	100	100	100	100	100	100
F2019-2021	100	100	100	0	0	0	0	0	0	0	9	25	33

b) 2023 年漁期は、2016~2020 年漁期の平均放流加入尾数を仮定。(仮定 2、本評価におけるベースケース)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	100	100	100	0	0	0	0	7	23	29	44	52	54
0.9	100	100	100	0	0	34	11	20	38	47	60	66	66
0.8	100	100	100	0	0	34	33	42	56	58	77	77	74
0.7	100	100	100	0	100	67	67	68	74	73	88	88	86
0.6	100	100	100	0	100	100	89	89	88	87	95	95	95
0.5	100	100	100	100	100	100	100	98	96	97	99	99	99
0.4	100	100	100	100	100	100	100	100	100	100	100	100	100
0.3	100	100	100	100	100	100	100	100	100	100	100	100	100
0.2	100	100	100	100	100	100	100	100	100	100	100	100	100
0.1	100	100	100	100	100	100	100	100	100	100	100	100	100
0	100	100	100	100	100	100	100	100	100	100	100	100	100
F2019-2021	100	100	100	0	0	0	0	0	0	0	10	26	33

c) 2023 年漁期は、2017~2021 年漁期の平均放流加入尾数を仮定。(仮定 3)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	100	100	100	0	0	0	0	7	23	29	44	52	54
0.9	100	100	100	0	0	34	11	20	38	47	60	66	66
0.8	100	100	100	0	0	34	33	40	56	58	77	77	74
0.7	100	100	100	0	100	67	67	68	74	73	88	88	86
0.6	100	100	100	0	100	100	89	87	87	87	95	95	95
0.5	100	100	100	100	100	100	100	98	96	97	99	99	99
0.4	100	100	100	100	100	100	100	100	100	100	100	100	100
0.3	100	100	100	100	100	100	100	100	100	100	100	100	100
0.2	100	100	100	100	100	100	100	100	100	100	100	100	100
0.1	100	100	100	100	100	100	100	100	100	100	100	100	100
0	100	100	100	100	100	100	100	100	100	100	100	100	100
F2019-2021	100	100	100	0	0	0	0	0	0	0	10	26	33

<放流による加入を考慮した場合>

d) 2023 年漁期以降、2016~2020 年漁期の平均放流加入尾数を仮定。(仮定 4)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	100	100	100	0	0	56	67	87	88	88	96	95	94
0.9	100	100	100	0	33	67	89	97	97	98	99	99	99
0.8	100	100	100	0	33	89	96	100	100	100	100	100	100
0.7	100	100	100	0	67	100	100	100	100	100	100	100	100
0.6	100	100	100	0	100	100	100	100	100	100	100	100	100
0.5	100	100	100	100	100	100	100	100	100	100	100	100	100
0.4	100	100	100	100	100	100	100	100	100	100	100	100	100
0.3	100	100	100	100	100	100	100	100	100	100	100	100	100
0.2	100	100	100	100	100	100	100	100	100	100	100	100	100
0.1	100	100	100	100	100	100	100	100	100	100	100	100	100
0	100	100	100	100	100	100	100	100	100	100	100	100	100
F2019-2021	100	100	100	0	0	11	19	40	60	63	81	82	80

e) 2023 年漁期以降、2017~2021 年漁期の平均放流加入尾数を仮定。(仮定 5)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	100	100	100	0	0	44	63	85	86	85	95	94	93
0.9	100	100	100	0	33	67	85	96	97	97	99	99	99
0.8	100	100	100	0	33	89	96	99	100	100	100	100	100
0.7	100	100	100	0	67	100	100	100	100	100	100	100	100
0.6	100	100	100	0	67	100	100	100	100	100	100	100	100
0.5	100	100	100	100	100	100	100	100	100	100	100	100	100
0.4	100	100	100	100	100	100	100	100	100	100	100	100	100
0.3	100	100	100	100	100	100	100	100	100	100	100	100	100
0.2	100	100	100	100	100	100	100	100	100	100	100	100	100
0.1	100	100	100	100	100	100	100	100	100	100	100	100	100
0	100	100	100	100	100	100	100	100	100	100	100	100	100
F2019-2021	100	100	100	0	0	11	11	34	55	60	78	79	77

補足表 7-4. 将来の平均親魚量の推移

<天然のみの加入の場合>

a) 2023 年漁期も天然のみの加入を仮定 (仮定 1)。平均親魚量の赤字は限界管理基準値 案 (=過去最低親魚量:329トン)を下回る親魚量を示す。

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	427	371	342	289	267	267	269	287	300	304	326	343	351
0.9	427	371	342	297	278	280	283	301	315	321	345	365	376
0.8	427	371	342	305	290	295	299	318	334	342	368	392	406
0.7	427	371	342	313	303	311	317	338	357	368	397	425	443
0.6	427	371	342	321	316	329	339	363	385	399	433	465	486
0.5	427	371	342	330	331	350	364	393	420	438	476	512	538
0.4	427	371	342	338	348	374	395	429	462	484	527	569	598
0.3	427	371	342	347	365	400	429	470	509	537	586	633	668
0.2	427	371	342	357	384	429	467	517	563	598	653	708	749
0.1	427	371	342	366	403	460	508	568	624	666	730	793	842
0	427	371	342	376	423	493	553	625	692	744	818	892	950
F2019-2021	427	371	342	279	243	229	221	230	240	246	268	288	299

b) 2023年漁期は、2016~2020年漁期の平均放流加入尾数を仮定(仮定 2、本評価におけるベースケース)。平均親魚量の赤字は限界管理基準値案(=過去最低親魚量:329トン)を下回る親魚量を示す。

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	427	371	342	289	303	294	278	288	298	302	325	342	351
0.9	427	371	342	297	315	309	294	303	314	319	344	364	376
0.8	427	371	342	305	328	326	312	322	334	341	368	391	406
0.7	427	371	342	313	342	347	336	347	360	369	398	425	443
0.6	427	371	342	321	357	370	363	377	393	404	436	467	487
0.5	427	371	342	330	373	395	394	413	433	447	481	516	540
0.4	427	371	342	338	392	423	429	453	478	496	535	574	602
0.3	427	371	342	347	411	453	467	498	529	551	596	640	673
0.2	427	371	342	357	431	485	508	547	586	614	665	717	755
0.1	427	371	342	366	452	520	553	602	650	686	745	804	850
0	427	371	342	376	475	557	603	663	722	768	836	906	961
F2019-2021	427	371	342	279	277	260	238	240	246	249	270	289	300

c) 2023 年漁期は、2017~2021 年漁期の平均放流加入尾数を仮定(仮定 3)。平均親魚量 の赤字は限界管理基準値案(=過去最低親魚量: 329 トン)を下回る親魚量を示す。

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	427	371	342	289	301	293	278	288	298	302	325	342	351
0.9	427	371	342	297	313	308	293	303	314	319	344	364	376
0.8	427	371	342	305	326	324	312	322	334	341	368	391	406
0.7	427	371	342	313	340	345	335	346	360	369	398	425	443
0.6	427	371	342	321	355	368	362	376	393	404	435	466	487
0.5	427	371	342	330	371	392	392	411	432	446	481	516	540
0.4	427	371	342	338	389	420	427	452	477	495	534	574	602
0.3	427	371	342	347	409	450	465	496	528	551	595	640	673
0.2	427	371	342	357	429	482	506	546	585	613	665	716	755
0.1	427	371	342	366	450	516	551	600	648	685	744	804	850
0	427	371	342	376	472	553	600	661	720	766	835	905	960
F2019-2021	427	371	342	279	275	258	237	239	245	249	270	289	300

<放流による加入を考慮した場合>

d) 2023 年漁期以降、2016~2020 年漁期の平均放流加入尾数を仮定(仮定 4)。平均親魚 量の赤字は限界管理基準値案(=過去最低親魚量:329 トン)を下回る親魚量を示す。

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	427	371	342	289	303	330	342	362	377	385	409	430	443
0.9	427	371	342	297	315	347	364	388	407	418	445	470	486
0.8	427	371	342	305	328	366	389	419	443	458	489	517	535
0.7	427	371	342	313	342	388	418	454	484	503	538	570	591
0.6	427	371	342	321	357	412	451	494	530	554	594	630	655
0.5	427	371	342	330	373	439	487	539	582	611	657	699	728
0.4	427	371	342	338	392	470	529	590	641	677	728	777	811
0.3	427	371	342	347	411	502	573	646	706	750	810	866	906
0.2	427	371	342	357	431	537	622	707	779	833	902	967	1016
0.1	427	371	342	366	452	575	676	775	861	927	1008	1084	1143
0	427	371	342	376	475	615	734	851	953	1033	1128	1219	1290
F2019-2021	427	371	342	279	277	293	302	321	337	347	371	392	404

e) 2023 年漁期以降、2017~2021 年漁期の平均放流加入尾数を仮定(仮定 5)。平均親魚 量の赤字は限界管理基準値案(=過去最低親魚量:329 トン)を下回る親魚量を示す。

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	427	371	342	289	301	326	338	358	372	380	403	424	437
0.9	427	371	342	297	313	343	360	383	401	412	439	464	479
0.8	427	371	342	305	326	362	384	413	436	451	481	510	528
0.7	427	371	342	313	340	384	413	448	477	495	530	562	583
0.6	427	371	342	321	355	408	445	487	522	545	585	621	646
0.5	427	371	342	330	371	435	481	531	573	602	647	689	717
0.4	427	371	342	338	389	465	521	581	631	666	718	765	799
0.3	427	371	342	347	409	497	566	636	696	739	798	853	893
0.2	427	371	342	357	429	532	614	697	768	820	889	953	1002
0.1	427	371	342	366	450	569	667	764	849	913	993	1069	1127
0	427	371	342	376	472	608	724	839	939	1018	1112	1201	1272
F2019-2021	427	371	342	279	275	289	298	317	332	341	365	386	398

補足表 7-5. 将来の平均漁獲量の推移

<天然のみの加入の場合>

a) 2023年漁期も天然のみの加入を仮定。(仮定 1)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	134	125	96	80	72	74	78	88	95	101	109	113	116
0.9	134	125	87	76	70	73	77	85	92	97	105	110	113
0.8	134	125	78	72	68	71	75	82	88	93	100	105	109
0.7	134	125	69	66	64	68	72	78	83	88	94	99	103
0.6	134	125	60	60	59	63	67	72	77	82	87	92	97
0.5	134	125	51	53	53	57	61	65	69	74	79	84	88
0.4	134	125	41	44	45	49	53	56	60	65	69	73	77
0.3	134	125	31	34	36	39	43	46	49	53	57	60	63
0.2	134	125	21	24	25	28	31	33	36	39	42	44	47
0.1	134	125	11	12	13	15	17	18	20	21	23	25	26
0	134	125	0	0	0	0	0	0	0	0	0	0	0
F2019-2021	134	125	106	97	89	88	90	93	99	106	111	117	122

b) 2023 年漁期は、2016~2020 年漁期の平均放流加入尾数を仮定。(仮定 2、本評価におけるベースケース)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	134	127	101	88	87	86	82	87	94	100	109	113	116
0.9	134	127	92	84	85	84	81	86	91	97	105	109	113
0.8	134	127	82	79	82	81	79	83	88	93	100	105	109
0.7	134	127	73	73	75	77	77	79	83	89	94	99	103
0.6	134	127	63	66	67	70	72	74	78	83	88	92	97
0.5	134	127	53	58	59	62	65	67	71	75	80	84	88
0.4	134	127	43	48	50	53	56	58	62	66	70	74	77
0.3	134	127	33	37	39	43	45	48	51	54	57	61	64
0.2	134	127	22	26	28	30	33	35	37	40	42	45	47
0.1	134	127	11	13	15	16	18	19	20	22	23	25	26
0	134	127	0	0	0	0	0	0	0	0	0	0	0
F2019-2021	134	127	111	107	97	95	94	96	100	106	112	118	123

c) 2023 年漁期は、2017~2021 年漁期の平均放流加入尾数を仮定。(仮定 3)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	134	127	100	88	86	85	82	87	94	100	109	113	116
0.9	134	127	91	83	84	84	81	86	91	97	105	109	113
0.8	134	127	82	78	81	80	79	83	88	93	100	105	109
0.7	134	127	73	73	75	76	76	79	83	88	94	99	103
0.6	134	127	63	66	67	70	71	74	78	83	88	92	97
0.5	134	127	53	58	59	62	64	67	71	75	80	84	88
0.4	134	127	43	48	49	53	56	58	62	66	70	74	77
0.3	134	127	33	37	39	43	45	47	51	54	57	61	64
0.2	134	127	22	26	27	30	32	34	37	40	42	45	47
0.1	134	127	11	13	14	16	18	19	20	22	23	25	26
0	134	127	0	0	0	0	0	0	0	0	0	0	0
F2019-2021	134	127	111	106	96	95	94	96	100	106	112	118	123

<放流による加入を考慮した場合>

d) 2023 年漁期以降、2016~2020 年漁期の平均放流加入尾数を仮定。(仮定 4)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	134	127	102	94	102	114	122	127	133	139	145	151	156
0.9	134	127	93	89	98	110	117	122	128	135	141	146	151
0.8	134	127	84	84	93	103	110	116	122	129	135	140	145
0.7	134	127	74	78	86	95	103	109	115	122	128	133	138
0.6	134	127	64	70	78	86	94	100	106	113	119	124	129
0.5	134	127	54	62	68	76	84	90	96	102	108	113	118
0.4	134	127	44	51	57	65	72	78	84	89	94	99	103
0.3	134	127	33	40	45	52	58	63	68	73	77	82	85
0.2	134	127	22	27	32	37	42	46	50	53	57	60	63
0.1	134	127	11	14	17	20	22	25	27	29	31	33	35
0	134	127	0	0	0	0	0	0	0	0	0	0	0
F2019-2021	134	127	113	114	114	119	126	131	138	145	151	158	163

e) 2023 年漁期以降、2017~2021 年漁期の平均放流加入尾数を仮定。(仮定 5)

β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1	134	127	102	93	100	112	120	125	131	137	143	149	154
0.9	134	127	93	89	96	108	115	120	126	133	139	144	149
0.8	134	127	83	83	92	102	109	114	120	127	133	139	144
0.7	134	127	74	77	85	94	101	107	113	120	126	131	136
0.6	134	127	64	70	77	85	92	99	105	111	117	122	127
0.5	134	127	54	61	67	75	83	89	95	101	106	111	116
0.4	134	127	44	51	56	64	71	77	82	88	93	98	102
0.3	134	127	33	39	44	51	57	62	67	72	76	80	84
0.2	134	127	22	27	31	36	41	45	49	53	56	59	62
0.1	134	127	11	14	16	19	22	24	27	29	31	33	34
0	134	127	0	0	0	0	0	0	0	0	0	0	0
F2019-2021	134	127	112	113	112	118	124	129	136	143	149	155	161

補足表 7-6. 10 年後までの将来予測の概略表 平均親魚量の赤字は限界管理基準値案 (= 過去最低親魚量:329 トン)を下回る親魚量を示す。

			2034年漁期までの10年間に1度でも限界管理基準値案を下回る					確率	
			2034年	漁期に目標	管理基準値第	え(577トン	′)を上回る	確率	
			予測平均親魚	魚量(トン)	予測平均	匀漁獲量	(トン)		
		現状の	5年後	10年後	管理開始年	5年後	10年後		
将来の加入の想定	β	漁獲圧							
		との比	(2029年	(2034年	(2024年	(2029年	(2034年		
			漁期)	漁期)	漁期)	漁期)	漁期)		
	1	0.91	287	351	96	76	101	0%	
2024年漁期以降は	0.9	0.82	301	376	87	74	98	1%	
2002~2020年漁期の	0.8	0.72	318	406	78	71	94	5%	
天然由来の加入水準を仮定	0.7	0.63	338	443	69	68	88	13%	
(2023年漁期の放流資源尾数を	0.6	0.54	363	486	60	62	82	25%	
考慮しない場合(仮定1))	0.5	0.45	393	538	51	56	74	34%	
	0.4	0.36	429	598	41	48	65	51%	
	現状の漁獲圧	1	230	299	106	93	122	0%	
2024年漁期以降は	1	0.91	288	351	101	86	101	0% 1%	
2002~2020年漁期の	0.9	0.82	303 322	376 406	92 82	83 80	98 94	1%	
7002~2020年温期の 天然由来の加入水準を仮定								5% 13%	
ス然田米の加入水準を収定 (2023年漁期の放流資源尾数は2016~	0.7	0.63	347 377	443 487	73 63	75 69	89		
	0.6	0.54	413	540	53	61	83 75	25% 35%	Τ(
2020年漁期平均(5.6万尾)を仮定、	0.5	0.45	453	602	43	52	66	52%	
反定2、本評価におけるベースケース)	現状の漁獲圧	1	240	300	111	96	123	0%	11
	九八の点技工	0.91	288	351	100	85	101	0%	
2024年漁期以降は	0.9	0.82	303	376	91	83	98	1%	
2002~2020年漁期の	0.8	0.72	322	406	82	80	94	5%	
天然由来の加入水準を仮定	0.7	0.63	346	443	73	75	89	13%	
(2023年漁期の放流資源尾数は2017~	0.6	0.54	376	487	63	69	83	25%	
2021年漁期平均(5.3万尾)を仮定、	0.5	0.45	411	540	53	61	75	35%	_`
仮定3)	0.4	0.36	452	602	43	52	66	52%	
	現状の漁獲圧	1	239	300	111	96	123	0%	10
	1	0.91	362	443	102	108	139	7%	
人切即任业业 * * * * * * * * * * * * * * * * * *	0.9	0.82	388	486	93	103	134	21%	
全期間種苗放流を考慮	0.8	0.72	419	535	84	97	128	32%	
2023年漁期の放流資源尾数は2016~	0.7	0.63	454	591	74	90	121	50%	
2020年漁期平均(5.6万尾)を仮定、	0.6	0.54	494	655	64	82	113	71%	
171.3万尾放流、添加効率0.033、	0.5	0.45	539	728	54	72	102	90%	
仮定4)	0.4	0.36	590	811	44	61	89	99%	
	現状の漁獲圧	1	321	404	113	131	163	1%	10
	1	0.91	358	437	102	106	137	6%	10
全期間種苗放流を考慮	0.9	0.82	383	479	93	102	132	19%	
主期间俚田灰流を考慮 (2023年漁期の放流資源尾数は2017	0.8	0.72	413	528	83	96	127	31%	
〜2023年漁期の放流員源尾数は2017 〜2021年漁期平均(5.3万尾)を仮定、	0.7	0.63	448	583	74	89	120	47%	10
~2021年漁期平均(5.3万尾)を収定、 163.9万尾放流、添加効率0.032、	0.6	0.54	487	646	64	81	111	68%	10
	0.5	0.45	531	717	54	72	100	87%	
仮定5)	0.4	0.36	581	799	44	61	87	98%	
	現状の漁獲圧	1	317	398	112	129	161	1%	10

補足資料8 各種パラメータと評価結果の概要

補足表 8-1. 将来予測における加入量の仮定

而之公 0 1. 村水 1 以(Cao) 7 0 加入重 2 区之						
項目	説明					
参照したデータ	2002~2021 年の天然当歳魚の資源尾数*					
更新データの利用	2002~2021 年のデータを更新、2022 年のデータを追加					
参照の仕方 (不確実性の考慮)	ブロックバックワードリサンプリング (ブロック年数 3 年)					

コメント:

[・]目標管理基準値は、令和 4 年 12 月に開催された「研究機関会議」で提案した値を暫定的に用いている。

^{*}研究機関会議の際の参照した年数分の本評価により更新されたデータ。

補足表 8-2. 最新年の親魚量と漁獲圧

項目	値	説明		
SB2022	427トン	2022年の親魚量		
F2022		圧(漁獲係数 F) (0 歳, 1 歳, 2 歳, 3 歳, 4 歳以上), 0.28, 0.30, 0.30)		
U2022	20%	2022 年の漁獲割合		
%SPR (F2022)	28.1%	2022 年の%SPR		
%SPR (F2019-2021)	27.4%	現状(2019~2021年)の漁獲圧に対応する%SPR*		
管理基準値案との比較	ξ			
SB2022/SBmsy proxy (SBtarget)	0.74	最大持続生産量を実現する親魚量の代替値(目標管理基準値案)に対する 2022 年の親魚量の比		
F2022/ Fmsy proxy	1.06	最大持続生産量を実現する漁獲圧の代替値に対す る 2022 年の漁獲圧の比*		
親魚量の水準	MSY を実現する水準を下回る			
漁獲圧の水準	MSY を実現する水準を上回る			
親魚量の動向	減少			

^{* 2022} 年の選択率の下で Fmsy proxy の漁獲圧を与える F を%SPR 換算して算出し求めた比率。

補足表 8-3. 予測漁獲量と予測親魚量

<天然のみの加入>

(仮定1) 2023 年漁期の種苗放流を仮定せず、2024 年漁期以降も種苗放流を仮定しない。 (令和4年度研究機関会議資料と同様に直近年の種苗放流を仮定しない場合)

2024 年漁期の親魚量(予測平均値):342トン							
項目	2024年の 漁獲量 (千トン)	漁獲量 対する比 2024年の 海獲割会(0)					
β=1.0	96	0.91	18				
β=0.9	87	0.82	17				
β=0.8	78	0.73	15				
β=0.7	69	0.64	13				
β=0.6	60	0.55	12				
β=0.5	51	0.46	9.8				
β=0.4	41	0.36	7.9				
F2019-2021	106	1	20				

(仮定 2) 2023 年漁期の種苗放流を 2016~2020 年漁期の放流尾数、添加効率から仮定。 (放流尾数、添加効率の参照年が令和 4 年度研究機関会議での参照年数と同じ)

2024 年漁期の親魚量(予測平均値):342トン						
項目	3024年の 漁獲量 (千トン) 現状の漁獲圧に 対する比 (F/F2019-2021) 2024年の 漁獲割合(%)					
β=1.0	101	0.91	18			
β=0.9	92	0.82	16			
β=0.8	82	0.73	15			
β=0.7	73	0.64	13			
β=0.6	63	0.55	11			
β=0.5	53	0.46	9.5			
β=0.4	43	0.36	7.7			
F2019-2021	111	1	20			

(仮定3) 2023 年漁期の種苗放流を2017~2021 年漁期の放流尾数、添加効率から仮定。 (放流尾数、添加効率の参照年を1年スライドし、直近期間とした)

2024 年漁期の親魚量(予測平均値):342トン						
項目	2024年の 漁獲量 (千トン) 現状の漁獲圧に 対する比 (F/F2019-2021) 2024年の 漁獲割合(%)					
β=1.0	100	0.91	18			
β=0.9	91	0.82	16			
β=0.8	82	0.73	15			
β=0.7	73	0.64	13			
β=0.6	63	0.55	11			
β=0.5	53	0.46	9.5			
β=0.4	43	0.36	7.7			
F2019-2021	111	1	20			

<放流を考慮した加入>

(仮定 4) 2023 年漁期の種苗放流を 2016~2020 年漁期の放流尾数、添加効率から一定の 放流加入を毎年仮定。

(放流尾数、添加効率の参照年が令和4年度研究機関会議での参照年数と同じ)

2024 年漁期の親魚量(予測平均値):342トン						
項目	2024年の 漁獲量 (千トン)	現状の漁獲圧に 対する比 (F/F2019-2021)	2024 年の 漁獲割合(%)			
β=1.0	102	0.91	18			
β=0.9	93	0.82	16			
β=0.8	84	0.73	15			
β=0.7	74	0.64	13			
β=0.6	64	0.55	11			
β=0.5	54	0.46	9.4			
β=0.4	44	0.36	7.6			
F2019-2021	113	1	20			

(仮定 5) 2023 年漁期の種苗放流を 2017~2021 年漁期の放流尾数、添加効率から一定の 放流加入を毎年仮定。

(放流尾数、添加効率の参照年を1年スライドし、直近期間とした)

2024年漁期の親魚量(予測平均値):342トン						
項目	2024年の 漁獲量 (千トン)	2024 年の 漁獲割合(%)				
β=1.0	102	0.91	18			
β=0.9	93	0.82	16			
β=0.8	83	0.73	15			
β=0.7	74	0.64	13			
β=0.6	64	0.55	11			
β=0.5	54	0.46	9.5			
β=0.4	44	0.36	7.7			
F2019-2021	112	1	20			

補足表 8-4. 異なる βを用いた将来予測結果

<天然のみの加入>

(仮定1) 2023 年漁期の種苗放流を仮定せず、2024 年漁期以降も種苗放流を仮定しない。 (令和4年度研究機関会議資料と同様に直近年の種苗放流を仮定しない場合)

考慮している不確実性:加入量					
β	2034年 の親魚量	90% 予測区間	2034年に親魚量が以下の 管理基準値案を上回る確率(%)		
	(トン)	(トン)	SBtarget 案	SBlimit 案	SBban 案
β=1.0	351	245 – 492	0	54	100
β=0.9	376	259 - 531	0.9	66	100
β=0.8	406	275 - 576	4.7	74	100
β=0.7	443	297 - 627	13	85	100
β=0.6	486	327 - 685	25	95	100
β=0.5	538	363 - 754	34	99	100
β=0.4	598	408 - 832	51	100	100
F2019-2021	299	189 - 437	0	33	100

(仮定 2) 2023 年漁期の種苗放流を 2016~2020 年漁期の放流尾数、添加効率から仮定。 (放流尾数、添加効率の参照年が令和 4 年度研究機関会議での参照年数と同じ)

考慮している不確実性:加入量					
β	2034年 の親魚量	90% 予測区間	2034年に親魚量が以下の 管理基準値案を上回る確率(%)		
	(トン)	(トン)	SBtarget 案	SBlimit 案	SBban 案
β=1.0	351	245 – 492	0	54	100
β=0.9	376	258 - 531	0.9	66	100
β=0.8	406	275 - 575	4.6	74	100
β=0.7	443	297 - 627	13	86	100
β=0.6	487	328 - 687	25	95	100
β=0.5	540	366 - 756	35	99	100
β=0.4	602	412 - 836	52	100	100
F2019-2021	300	189 - 437	0	33	100

(仮定3) 2023 年漁期の種苗放流を2017~2021 年漁期の放流尾数、添加効率から仮定。 (放流尾数、添加効率の参照年を1年スライドし、直近期間とした)

考慮している不確実性:加入量					
β	2034年 の親魚量	現魚量 予測区間	2034年に親魚量が以下の 管理基準値案を上回る確率(%)		
·	(トン)		SBtarget 案	SBlimit 案	SBban 案
β=1.0	351	245 – 492	0	54	100
β=0.9	376	258 - 531	0.9	66	100
β=0.8	406	275 - 575	4.6	74	100
β=0.7	443	297 - 627	13	86	100
β=0.6	487	328 - 686	25	95	100
β=0.5	540	365 - 756	35	99	100
β=0.4	602	412 - 836	52	100	100
F2019-2021	300	189 - 437	0	33	100

<放流を考慮した加入>

(仮定 4) 2023 年漁期の種苗放流を 2016~2020 年漁期の放流尾数、添加効率から一定の 放流加入を毎年仮定。

(放流尾数、添加効率の参照年が令和4年度研究機関会議での参照年数と同じ)

考慮している不確実性:加入量					
β	2034年 の親魚量		2034年に親魚量が以下の 管理基準値案を上回る確率(%)		
	(トン)	(トン)	SBtarget 案	SBlimit 案	SBban 案
β=1.0	443	326 - 589	6.8	94	100
β=0.9	486	359 - 644	21	99	100
β=0.8	535	398 - 706	32	100	100
β=0.7	591	443 - 776	50	100	100
β=0.6	655	494 – 855	71	100	100
β=0.5	728	553 – 944	90	100	100
β=0.4	811	620 - 1,045	99	100	100
F2019-2021	404	293 - 541	0.9	80	100

(仮定 5) 2023 年漁期の種苗放流を 2017~2021 年漁期の放流尾数、添加効率から一定の 放流加入を毎年仮定。

(放流尾数、添加効率の参照年を1年スライドし、直近期間とした)

考慮している不確実性:加入量								
β	2034年 の親魚量 (トン)	90% 予測区間 (トン)	2034年に親魚量が以下の 管理基準値案を上回る確率(%)					
			SBtarget 案	SBlimit 案	SBban 案			
β=1.0	437	321 - 583	6.1	93	100			
β=0.9	479	352 - 637	19	99	100			
β=0.8	528	390 - 699	31	100	100			
β=0.7	583	434 - 768	47	100	100			
β=0.6	646	485 - 845	68	100	100			
β=0.5	717	543 – 933	87	100	100			
β=0.4	799	609 - 1,033	98	100	100			
F2019-2021	398	288 - 536	0.7	77	100			

補足表 8-5. 異なる β を用いた将来予測結果 (続き)

<天然のみの加入>

(仮定1) 2023 年漁期の種苗放流を仮定せず、2024年漁期以降も種苗放流を仮定しない。 (令和4年度研究機関会議資料と同様に直近年の種苗放流を仮定しない場合)

考慮している不確実性:加入量						
β	親魚量が管理基準値案を50%以上の確率で上回る年					
	SBtarget 案	SBlimit 案	SBban 案			
β=1.0	_	2033	2024			
β=0.9	2062	2032	2024			
β=0.8	2044	2030	2024			
β=0.7	2041	2029	2024			
β=0.6	2038	2027	2024			
β=0.5	2036	2026	2024			
β=0.4	2034	2024	2024			
F2019-2021	_	2037	2024			

^{※「}親魚量が管理基準値案を 50%以上の確率で上回る年」は 2024 年漁期に漁獲管理開始 した場合に 2024~2062 年漁期までの間に最初に達成する年を指す。達成しない場合は 「一」とした。

(仮定 2) 2023 年漁期の種苗放流を 2016~2020 年漁期の放流尾数、添加効率から仮定。 (放流尾数、添加効率の参照年が令和 4 年度研究機関会議での参照年数と同じ)

考慮している不確実性:加入量						
β	親魚量が管理基準値案を50%以上の確率で上回る年					
	SBtarget 案	SBlimit 案	SBban 案			
β=1.0	_	2033	2024			
β=0.9	2062	2032	2024			
β=0.8	2044	2030	2024			
β=0.7	2041	2026	2024			
β=0.6	2038	2026	2024			
β=0.5	2036	2024	2024			
β=0.4	2034	2024	2024			
F2019-2021	_	2037	2024			

^{※「}親魚量が管理基準値案を 50%以上の確率で上回る年」は 2024 年漁期に漁獲管理開始 した場合に 2024~2062 年漁期までの間に最初に達成する年を指す。達成しない場合は 「一」とした。

(仮定3) 2023 年漁期の種苗放流を2017~2021 年漁期の放流尾数、添加効率から仮定。 (放流尾数、添加効率の参照年を1年スライドし、直近期間とした)

考慮している不確実性:加入量	t		
Q	親魚量が管理基準	準値案を 50%以上の	D確率で上回る年
β	SBtarget 案	SBlimit 案	SBban 案
β=1.0	_	2033	2024
β=0.9	2062	2032	2024
β=0.8	2044	2030	2024
β=0.7	2041	2026	2024
β=0.6	2038	2026	2024
β=0.5	2036	2024	2024
β=0.4	2034	2024	2024
F2019-2021	_	2037	2024

^{※「}親魚量が管理基準値案を 50%以上の確率で上回る年」は 2024 年漁期に漁獲管理開始 した場合に 2024~2062 年漁期までの間に最初に達成する年を指す。達成しない場合は 「一」とした。

<放流を考慮した加入>

(仮定 4)2023 年漁期の種苗放流を 2016~2020 年漁期の放流尾数、添加効率から一定の放流 加入を毎年仮定。

(放流尾数、添加効率の参照年が令和4年度研究機関会議での参照年数と同じ)

考慮している不確実性:加入	量		
0	平均親魚量が管理	基準値案を 50%以_	上の確率で上回る年
β	SBtarget 案	SBlimit 案	SBban 案
β=1.0	2042	2027	2024
β=0.9	2040	2027	2024
β=0.8	2037	2027	2024
β=0.7	2035	2026	2024
β=0.6	2032	2026	2024
β=0.5	2030	2024	2024
β=0.4	2029	2024	2024
F2019-2021	2050	2030	2024

^{※「}親魚量が管理基準値案を 50%以上の確率で上回る年」は 2024 年漁期に漁獲管理開始 した場合に 2062 年漁期以降に最初に達成する年を指す。達成しない場合は「一」とした。

(仮定 5) 2023 年漁期の種苗放流を 2017~2021 年漁期の放流尾数、添加効率から一定の 放流加入を毎年仮定。

(放流尾数、添加効率の参照年を1年スライドし、直近期間とした)

考慮している不確実性:加入量	t		
o.	平均親魚量が管理	基準値案を 50%以」	上の確率で上回る年
β	SBtarget 案	SBlimit 案	SBban 案
β=1.0	2043	2028	2024
β=0.9	2040	2027	2024
β=0.8	2037	2027	2024
β=0.7	2035	2026	2024
β=0.6	2032	2026	2024
β=0.5	2031	2024	2024
β=0.4	2029	2024	2024
F2019-2021	_	2030	2024

^{※「}親魚量が管理基準値案を 50%以上の確率で上回る年」は 2024 年漁期に漁獲管理開始 した場合に 2062 年漁期以降に最初に達成する年を指す。達成しない場合は「-」とした。

補足資料 9 代替漁獲管理規則(上限下限ルール)の試算結果

漁獲管理規則(Harvest Control Rule, HCR)とは、資源量の水準や状態に応じて、とるべき漁獲の強さや漁獲量を自動的に計算するためのルールである(Deroba and Bense 2008)。資源管理においては、漁獲管理規則をあらかじめ合意しておくことにより、毎年、資源状態を見ながら漁獲枠を議論する際の透明性が確保できる。我が国資源で検討・導入されている漁獲管理規則、または、ステークホルダーによって合意された漁獲シナリオについても、基本的に、管理期間内で一貫したものを用いることが想定されており、管理期間内の漁獲圧を一定とする方策が基本になっている。

令和2年度の漁獲管理方針に関する検討会において、漁獲量の変動を緩和するルールの 検討が求められ、直近数年のみ漁獲量を一定にしたり、例外措置を適用したりするような 代替ルールが考案された。代替ルールは、漁業活動上の必要性と資源状態の維持の両立を 目的として検討を行う必要があり、代替ルールを用いたとしても管理期間 10 年後に目標 が達成されるように設計する必要がある。

研究機関会議案では18ルール下での推定結果から、漁獲管理規則案はまずβに標準値である0.7による提案をしたが、Fmsy proxy/F2018-2020は0.91と推定され、天然加入に基づき漁獲管理をした場合、2033年漁期に目標管理基準値案(577トン)を上回る確率は16%、現状の放流の考慮により、同確率は67%と示されており、種苗放流の実施により早期の目標達成が想定される。一方、トラフグでは海域による漁期規制や産卵期の親魚や成育期の当歳魚など、特定の時期、サイズのみを漁獲対象とされる漁業者が多く、今後の漁獲管理においては複数の選択肢を参照したい要請が研究機関会議においてもあった。そこで、研究機関会議では管理を開始する年の漁獲量の削減率およびその後の年々の漁獲量の変動幅(以降、CVと呼ぶ)を一定範囲以内とする代替漁獲管理規則(上限下限ルール)を試算した。なお、代替漁獲管理規則に関するガイドラインはFRA-SA2022-ABCWG02-06にまとめられている。

 $Ct \ ensuremath{\varepsilon} \ t \ ensuremath{\varepsilon} \ e$

$$C_{t-1} \cdot L \leq C_t \leq C_{t-1} \cdot U$$

Ct の制限期間は 2023 年から 10 年間 (10y) を設定し、それ以降は通常の漁獲管理規則に従う管理を検討した。漁獲量の変動幅 (CV) については、前年比 \pm 5%以内 (CV5: U=1.05, L=0.95)、 \pm 10%以内 (CV10: U=1.10, L=0.90)、 \pm 20%以内 (CV20: U=1.20, L=0.80)の 3 通りを検討した。現在の本資源の漁業利用状況を考慮し、天然のみの加入の場合(仮定 2、仮定 3)および放流を考慮した場合について、2016~2020 年漁期の平均放流資源尾数を考慮した場合 (研究機関会議案でも放流を考慮した場合として扱われた期間: 仮定 4)と、直近期間を考慮した2017~2021年漁期の平均放流資源尾数を考慮した場合(仮定 5)について、標準値である β =0.7 および 10 年後に目標管理基準値案を 50%以上の確率で達成する β =0.8, 0.9 をベースとして将来予測のシミュレーションを行い、基本的漁獲管理規

則等の結果を比較した。

それぞれの漁獲管理規則における将来予測の結果(平均親魚量、平均漁獲量)を補足表 9-1~2 に示した。管理規則導入期間を通した漁獲量の指標として、1 年目(2024 年漁期)、2~5 年目(2025~2028 年漁期)、および 6~10 年目(2029~2033 年漁期)の漁獲量の期間中の平均値を、基本的漁獲管理規則と変動幅の異なる 3 つの代替漁獲管理規則(10y_CV5、10y_CV10、10y_CV20)の三者で比較した(補足表 9-3)。10y_CV5、10y_CV10、10y_CV20 ともに、1 年目の平均漁獲量は基本とされている漁獲管理規則(β =0.7、 β =0.8 もしくは β =0.9 で一定)を適用した漁獲管理規則を適用した場合より高くなったが、2~5 年目では、CV10、CV20 は同等、6~10 年目では CV20 では同等、CV5、CV10 では低くなった(補足表 9-3)。

資源の持続性を示す指標として、管理開始から6年後(2029年漁期)と11年後(2034年漁期)の平均親魚量を比較した(補足表9-3)。天然のみの加入の場合、いずれの代替漁獲管理規則でも2029年漁期と2034年漁期の平均親魚量は基本的漁獲管理規則の値を下回った。放流ありの場合は、6年後はCV20で基本的漁獲管理規則と同等、11年後はCV10で最も多く、CV20では基本的漁獲管理規則と同等、CV5で基本的漁獲管理規則よりも下回った。

10 年後の平均親魚量が目標管理基準値案を上回る確率は、天然のみの加入の場合、基本的漁獲管理規則では $1\sim13\%$ 、CV5 で $6\sim8\%$ 、CV10 で $17\sim24\%$ 、CV20 で $3\sim15\%$ であった(補足表 9-3)。また資源が望ましくない状態に陥るリスクの指標として、管理規則が導入された 10 年間で 1 度でも限界管理基準値案、禁漁水準案を下回る確率を比較したところ、放流の有無にかかわらず、 $\beta=0.7$, $\beta=0.8$, 0.9 のいずれの場合でも、漁獲管理規則も含めて親魚量が限界管理基準値案を下回る確率は 100%であった。なお、天然のみの加入の場合、 $\beta=0.7$ のとき、基本ルールでは限界管理基準値案(=過去最低親魚量)を下回る親魚量は漁獲管理開始後から 1 年のみと推定されたが、CV5%で 9 年、CV10%で 7 年、CV20%で 4 年となる。また、放流を考慮した場合では、 $\beta=0.7$ では、漁獲管理開始後から、基本ルールでは 1 年、CV5%で 4 年、CV10%で 3 年、CV20%で 2 年に短縮する(補足表 9-1)。

管理期間 10 年間で予測される漁獲量の変動の指標として、平均年変動(AAV: annual average variation)、最低漁獲量(MinC: minimum catch)を各漁獲管理規則の間で比較したところ、天然のみで β =0.7 では、AAV は基本的漁獲管理規則では 0.05(0.06)であるのに対し、代替漁獲管理規則 10y_CV5 では 0.05(0.05)、10y_CV10 では 0.09(0.09)、10y_CV20 では 0.10(0.11)であった。さらに MinC は基本的漁獲管理規則で 69(69)トンであるのに対し、CV5%では 79(79)トン、CV10%では、65(64)トン、CV20%では 64(63)トンとなった。(カッコ内はいずれも 2023 年漁期の放流資源尾数に 2017~2021年漁期の平均放流資源尾数を参照した場合)

放流を考慮した場合、 β =0.7 では、AAV は基本的漁獲管理規則では 0.07 (0.07) であるのに対し、代替漁獲管理規則 $10y_{CV5}$ では 0.05 (0.05)、 $10y_{CV10}$ では 0.08 (0.08)、 $10y_{CV20}$ では 0.10 (0.10) であった。さらに MinC は基本的漁獲管理規則で 74 (74) トンであるのに対し、CV5%では 94 (93) トン、CV10%では、84 (83) トン、CV20%では 76 (75) トンとなった。(カッコ内はいずれも 2023 年漁期以降の放流資源尾数に 2017~

2021 年漁期の平均放流資源尾数を参照した場合)

加えて、将来予測の結果では、管理1年目(2024年漁期)の平均漁獲量は前年比の変動幅が5%以内、10%以内、20%以内のすべての場合で基本的漁獲管理規則案より高いが、2031年漁期以降、すべての緩和措置で基本的漁獲管理案と同等もしくはより低くなった。(補足表9-2)。また、累積漁獲量は、天然のみの加入の場合、CV5では前半5年の漁獲量が多いものの、後半5年は逆転した。放流ありの場合、この傾向はさらに顕著で、 β =0.7~0.9 のいずれでも前半5年の漁獲量は CV5 が最も高いが、後半5年は最も少なくなり、10年間の合計でも基本的漁獲管理規則か、CV20、 β =0.7のときが最も多くなった(補足表9-2)。

以上の結果をもとに、代替漁獲管理規則に関するガイドライン(FRA-SA2022-ABCWG02-06) にもとづき代替漁獲管理規則のカテゴリ分けを行なった(補足表 9-1、9-2)。天然のみの場合、仮定 2、仮定 3、いずれの場合の調整係数、漁獲管理方策案におい ても、10年後までに目標管理基準値案に到達せず、カテゴリは0(管理目標に適わない) となった。放流を考慮した場合、仮定4(2016~2020年漁期の平均放流資源尾数を考慮) では β=0.7 で基本的漁獲管理規則、CV5、CV10、CV20 のいずれも管理基準に適う (目標 管理基準値案を50%超える)が、基本的漁獲管理規則においても、限界管理基準値案を下 回る年が生じることから、限界管理基準値案よりも低いβが望ましいと考えられることか ら、「カテゴリ 1:基本ルールよりもリスクが高いが、管理目標には適う」とした。一方、 CV5、CV10、CV20の場合は、2034年漁期には目標管理基準値案を上回っており、カテゴ リ 0 よりも上位と考えられるものの、いずれも限界管理基準値案を下回る年数が多いこと から、「カテゴリ 1:基本ルールよりもリスクが高いが、管理目標には適う」を採用した。 これ以外の各β、上限下限ルールでは目標管理基準値を上回る確率が50%以下であったこ とから、いずれもカテゴリ 0 (管理目標に適わない) とした。仮定 5 (2017~2021 年漁期 の平均放流資源尾数を考慮)では β=0.7 で管理基準に適う(目標管理基準値案を 50%超え る)のは、CV5のみであったが、限界管理基準値案を下回る年数が多いことから、「カテ ゴリ 1: 基本ルールよりもリスクが高いが、管理目標には適う」とし、これ以外の各 β、 上限下限ルールでは目標管理基準値を上回る確率が50%以下であったことから、いずれも カテゴリ0(管理目標に適わない)とした。

本評価では、基本ルールにおける標準値 β =0.7 の場合でも、現在の加入と資源状態では少なくとも 1 年間は過去最低親魚量を下回る予測結果が得られている。一方、資源量指標値の収集段階においても、備讃瀬戸海域(図 3-7)、備後灘海域(図 3-8)、関門海峡(図 3-11)といった、産卵場海域では、いずれも産卵期に来遊する親魚の CPUE が低下している結果が得られていることから、過去最低親魚量を下回る資源状態では、産卵の実働親魚量はさらに低下することが考えられることから、過去最低親魚量の期間の長さは、本系群の加入や資源状態を判断する上ではリスクとなり得ると考えられる。したがって、上限下限ルールを適用した場合、過去最低親魚量の期間の長さは想定した加入が見込まれないリスクについても留意する必要があると考えられる。

引用文献

市野川桃子・西嶋翔太・向 草世香・黒田啓行・大下誠二 (2022) 改正漁業法下での様々

な代替漁獲管理規則の検討: マイワシ2系群を例に. 日本水産学会誌, **88**(4), 239-255. https://www.jstage.jst.go.jp/article/suisan/88/4/88_21-00041/_pdf/-char/ja

Deroba, J. & Bence, J. (2008) A Review of Harvest Policies: Understanding Relative Performance of Control Rules. Fish. Res., **94**, 210-223. 10.1016/j.fishres.2008.01.003

補足表 9-1 将来予測に上限下限ルールを適用した場合の平均親魚量(単位:トン)の推移

a) 天然のみ加入を考慮。2023 年漁期は2016~2020 年漁期の平均放流資源尾数を考慮(仮定2)

								2034年漁	魚期までの	の10年間	に1度で	も限界管	理基準値	案を下し	回る確当	<u>K</u>		
								2034年漁	魚期に親負	魚量が目	標管理基	準値案	(577トン	か を上回	回る確率	区		
								2034年漁	魚期に親負	魚量が限	界管理基	準値案	(329トン)を上回	回る確率	区		
漁獲管理規則	β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	カテゴリ			
	0.9	427	371	342	297	315	309	294	303	314	319	344	364	376	0	66%	1%	100%
基本ルール	0.8	427	371	342	305	328	326	312	322	334	341	368	391	406	0	74%	5 %	100%
	0.7	427	371	342	313	342	347	336	347	360	369	398	425	443	0	86%	13%	100%
上限下限ルール	0.9	427	371	342	272	262	231	201	197	202	214	251	295	338	0	49%	6%	100%
上限下限ルール (±5%)	0.8	427	371	342	272	262	231	201	197	202	214	252	297	342	0	51%	7%	100%
(-670)	0.7	427	371	342	272	262	231	201	197	202	214	252	299	346	0	51%	8%	100%
上限下限ルール	0.9	427	371	342	278	278	263	250	265	288	309	350	391	420	0	70%	17%	100%
上限下限ルール (±10%)	0.8	427	371	342	278	278	263	250	266	292	317	363	408	442	0	76%	21%	100%
(-10/0)	0.7	427	371	342	278	278	263	250	267	295	324	375	425	463	0	82%	24%	100%
	0.9	427	371	342	289	308	305	292	303	314	321	346	369	383	0	66%	3%	100%
上限下限ルール (±20%)	0.8	427	371	342	289	308	313	305	319	334	342	370	395	411	0	74%	7%	100%
(=20/0)	0.7	427	371	342	289	308	319	317	337	356	368	398	427	446	0	85%	15%	100%

2024年海期までの10年間に1度で+ 阻用管理は準値安を下向を確認

平均親魚量が過去最低親魚量(=限界管理基準値案:329トン)を下回る場合、赤字で示す。代替ルールのカテゴリ化として、カテゴリ0:管理目標に適わない、カテゴリ1:基本ルールよりもリスクが高いが、管理目標には適う、カテゴリ2:管理目標に適い、かつ基本ルールのリスク以下、カテゴリ3:管理目標に適い、かつより保守的な基本ルール(β=0.7)と同等か、それ以下のリスク、とした。

b) 天然のみ加入を考慮。2023年漁期は2017~2021年漁期の平均放流資源尾数を考慮(仮定3)

2034年漁期までの10年間に1度でも限界管理基準値案を下回る確率 2034年漁期に親魚量が目標管理基準値案(577トン)を上回る確率 2034年漁期に親魚量が限界管理基準値案(329トン)を上回る確率 カテ 漁獲管理規則 В ゴリ 0.9 66% **1%** 100% 基本ルール 0.8 **5%** 100% 74% 0.7 86% **13%** 100% **6%** 100% 0.9 49% 上限下限ルール 8.0 50% **7%** 100% $(\pm 5\%)$ 0.7 8% 100% 51% 0.9 **70% 17% 100%** 上限下限ルール 8.0 **76% 21% 100%** $(\pm 10\%)$ 0.7 **82% 24%** 100% 0.9 66% 3% 100% 上限下限ルール 0.8 **74% 7%** 100% $(\pm 20\%)$ 85% **15%** 100% 0.7

平均親魚量が過去最低親魚量 (=限界管理基準値案:329トン)を下回る場合、赤字で示す。代替ルールのカテゴリ化として、カテゴリ0:管理目標に適わない、カテゴリ1:基本ルールよりもリスクが高いが、管理目標には適う、カテゴリ2:管理目標に適い、かつ基本ルールのリスク以下、カテゴリ3:管理目標に適い、かつより保守的な基本ルール(β=0.7)と同等か、それ以下のリスク、とした。

c) 将来にわたり、2016~2020年漁期の平均放流資源尾数を考慮(仮定4)

								2034年》	魚期までの	の10年間	に1度で	も限界管	理基準値	案を下	回る確≊	平		
								2034年》	魚期に親加	魚量が目	標管理基	準値案	(577トン)を上回	回る確率			
								2034年》	魚期に親類	魚量が限	界管理基	準値案	(329トン)を上回	回る確率	率		
漁獲管理規則	β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	カテゴリ			
	0.9	427	371	342	297	315	347	364	388	407	418	445	470	486	0	99%	21%	100%
基本ルール	0.8	427	371	342	305	328	366	389	419	443	458	489	517	535	0	100%	32%	100%
	0.7	427	371	342	313	342	388	418	454	484	503	538	570	591	1	100%	50%	100%
	0.9	427	371	342	274	270	287	306	344	383	417	469	518	556	0	99%	38%	100%
上限下限ルール (±5%)	0.8	427	371	342	274	270	287	306	347	391	430	487	541	584	0	100%	44%	100%
(=3/0)	0.7	427	371	342	274	270	287	307	349	397	442	506	567	616	1	100%	54%	100%
	0.9	427	371	342	279	285	317	344	383	415	435	468	498	515	0	99%	28%	100%
上限下限ルール (±10%)	0.8	427	371	342	279	285	318	351	396	436	462	503	538	560	0	100%	37%	100%
(=10/0)	0.7	427	371	342	279	285	318	356	409	457	492	540	582	610	1	100%	52%	100%
上限下限ルール	0.9	427	371	342	290	310	343	363	388	408	419	446	470	486	0	99%	21%	100%
上限下限ルール (±20%)	0.8	427	371	342	290	314	355	383	417	442	458	489	517	535	0	100%	32%	100%
(=25,0)	0.7	427	371	342	290	314	364	402	446	479	500	536	569	591	1	100%	50%	100%

2024年海期ナスの10年間に1座でナ阳田笠田甘淮佐安を下向フ藤玄

平均親魚量が過去最低親魚量(=限界管理基準値案:329トン)を下回る場合、赤字で示す。代替ルールのカテゴリ化として、カテゴリ0:管理目標に適わない、カテゴリ1:基本ルールよりもリスクが高いが、管理目標には適う、カテゴリ2:管理目標に適い、かつ基本ルールのリスク以下、カテゴリ3:管理目標に適い、かつより保守的な基本ルール(β=0.7)と同等か、それ以下のリスク、とした。

d) 将来にわたり、2017~2021年漁期の平均放流資源尾数を考慮(仮定5)

								2034年漁	触期までの	の10年間	に1度で	も限界管	理基準値	案を下回	回る確率	区		
								2034年消	期に親知	魚量が目	標管理基	準値案	(577トン)を上回	回る確率	<u>k</u>		
								2034年漁	期に親知	魚量が限	界管理基	準値案	(329トン)を上回	回る確率	<u>k</u>		
漁獲管理規則	β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	カテ			
点接旨垤 烧則	р	2022	2023	2024	2025	2020	2021	2020	2029	2030	2031	2032	2033	2034	ゴリ			
	0.9	427	371	342	297	313	343	360	383	401	412	439	464	479	0	99%	19%	100%
基本ルール	0.8	427	371	342	305	326	362	384	413	436	451	481	510	528	0	100%	31%	100%
	0.7	427	371	342	313	340	384	413	448	477	495	530	562	583	0	100%	47%	100%
	0.9	427	371	342	274	268	281	298	334	373	407	459	509	548	0	99%	37%	100%
上限下限ルール (±5%)	0.8	427	371	342	274	268	281	299	337	380	418	475	530	574	0	100%	42%	100%
(±3/0)	0.7	427	371	342	274	268	281	299	338	385	429	493	554	604	1	100%	50%	100%
172772	0.9	427	371	342	279	283	311	338	376	408	428	463	492	510	0	99%	28%	100%
上限下限ルール (± 10 %)	0.8	427	371	342	279	283	312	344	389	428	456	496	532	555	0	100%	36%	100%
(±10/6)	0.7	427	371	342	279	283	312	348	400	448	483	532	575	603	0	100%	49%	100%
1727724	0.9	427	371	342	290	308	340	358	383	402	413	440	464	479	0	99%	19%	100%
上限下限ルール (±20%)	0.8	427	371	342	290	312	351	378	411	436	451	482	510	528	0	100%	31%	100%
(± 2U /0)	0.7	427	371	342	290	312	359	396	439	472	493	528	561	582	0	100%	46%	100%

平均親魚量が過去最低親魚量(=限界管理基準値案:329トン)を下回る場合、赤字で示す。代替ルールのカテゴリ化として、カテゴリ0:管理目標に適わない、カテゴリ1:基本ルールよりもリスクが高いが、管理目標には適う、カテゴリ2:管理目標に適い、かつ基本ルールのリスク以下、カテゴリ3:管理目標に適い、かつより保守的な基本ルール(β=0.7)と同等か、それ以下のリスク、とした。

補足表 9-2 将来予測に上限下限ルールを適用した場合の平均漁獲量(単位:トン)の推移

a) 天然のみ加入を考慮。2023 年漁期は2016~2020 年漁期の平均放流資源尾数を考慮(仮定2)

											202	4∼203	4年漁期	累積漁	獲量
漁獲管理規則	β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	
	0.9	134	127	92	84	85	84	81	86	91	97	105	109	113	1,026
基本ルール	0.8	134	127	82	79	82	81	79	83	88	93	100	105	109	980
	0.7	134	127	73	73	75	77	77	79	83	89	94	99	103	923
L78 T78 11 11	0.9	134	127	120	114	109	103	98	93	89	86	85	85	87	1,071
上限下限ルール (±5%)	0.8	134	127	120	114	109	103	98	93	89	85	84	84	85	1,064
(=3/0)	0.7	134	127	120	114	109	103	98	93	89	85	82	82	82	1,058
L 78 - 78 11 11	0.9	134	127	114	103	92	83	77	76	79	83	88	94	100	990
上限下限ルール (±10%)	0.8	134	127	114	103	92	83	76	73	75	78	83	89	95	962
(=10/0)	0.7	134	127	114	103	92	83	75	70	71	73	78	84	90	933
L 78 - 78 11 11	0.9	134	127	101	82	82	82	80	85	91	96	102	108	113	1,022
上限下限ルール (±20%)	0.8	134	127	101	81	74	77	77	82	87	92	98	104	109	982
(-20/0)	0.7	134	127	101	81	67	70	72	77	82	88	93	99	103	933

b) 天然のみ加入を考慮。2023 年漁期は2017~2021 年漁期の平均放流資源尾数を考慮(仮定3)

											202	4~203	4年漁期	累積漁	獲量
漁獲管理規則	β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	
	0.9	134	127	91	83	84	84	81	86	91	97	105	109	113	1,024
基本ルール	0.8	134	127	82	78	81	80	79	83	88	93	100	105	109	978
	0.7	134	127	73	73	75	76	76	79	83	88	94	99	103	921
L 78 T 78 11 11	0.9	134	127	120	114	109	103	98	93	89	86	85	85	87	1,070
上限下限ルール (±5%)	0.8	134	127	120	114	109	103	98	93	89	85	83	83	85	1,063
(=3/0)	0.7	134	127	120	114	109	103	98	93	89	85	82	82	82	1,057
	0.9	134	127	114	103	92	83	77	76	78	83	88	93	100	987
上限下限ルール (±10%)	0.8	134	127	114	103	92	83	76	73	74	78	83	89	95	960
(=10/0)	0.7	134	127	114	103	92	83	75	70	70	73	78	83	89	931
L 78 - 78 11 11	0.9	134	127	101	82	81	82	80	85	91	96	102	108	113	1,020
上限下限ルール (±20%)	0.8	134	127	101	81	73	76	77	82	87	92	98	104	109	980
(=20/0)	0.7	134	127	101	81	67	69	71	77	82	87	93	99	103	931

c) 将来にわたり、2016~2020年漁期の平均放流資源尾数を考慮(仮定4)

											202	4 ~203	4年漁期	累積漁	獲量
漁獲管理規則	β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	
	0.9	134	127	93	89	98	110	117	122	128	135	141	146	151	1,329
基本ルール	0.8	134	127	84	84	93	103	110	116	122	129	135	140	145	1,261
	0.7	134	127	74	78	86	95	103	109	115	122	128	133	138	1,180
L 78 - 78 11 11	0.9	134	127	120	114	109	104	103	106	110	115	120	125	130	1,256
上限下限ルール (±5%)	0.8	134	127	120	114	109	103	100	101	105	109	114	119	124	1,219
(=3/0)	0.7	134	127	120	114	109	103	98	96	98	102	107	111	116	1,177
	0.9	134	127	114	103	94	97	105	113	121	129	136	144	151	1,307
上限下限ルール (±10%)	0.8	134	127	114	103	93	91	98	106	114	122	129	137	144	1,249
(=20/0)	0.7	134	127	114	103	92	86	90	97	105	113	120	128	135	1,184
L 78 - 78 11 11	0.9	134	127	101	86	96	108	116	122	128	135	141	146	151	1,331
上限下限ルール (±20%)	0.8	134	127	101	82	87	99	109	115	122	129	135	140	145	1,265
(-20/0)	0.7	134	127	101	81	78	89	99	107	114	121	127	133	138	1,190

d) 将来にわたり、2017~2021年漁期の平均放流資源尾数を考慮(仮定5)

											202	4~203	4年漁其	月累積漁	獲量
漁獲管理規則	β	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	
	0.9	134	127	93	89	96	108	115	120	126	133	139	144	149	1,312
基本ルール	0.8	134	127	83	83	92	102	109	114	120	127	133	139	144	1,245
	0.7	134	127	74	77	85	94	101	107	113	120	126	131	136	1,165
	0.9	134	127	120	114	109	104	102	104	108	112	117	122	128	1,240
上限下限ルール (±5%)	0.8	134	127	120	114	109	103	100	100	103	107	112	117	122	1,206
(=3/0)	0.7	134	127	120	114	109	103	98	96	97	101	105	110	114	1,167
	0.9	134	127	114	103	94	96	103	111	119	127	134	141	148	1,289
上限下限ルール (±10%)	0.8	134	127	114	103	92	90	96	104	112	119	127	134	141	1,232
(=10/0)	0.7	134	127	114	103	92	85	88	95	103	111	118	125	133	1,168
L 78 - 78 11 11	0.9	134	127	101	86	94	106	114	120	126	133	139	144	149	1,313
上限下限ルール (±20%)	0.8	134	127	101	81	86	98	107	114	120	127	133	139	144	1,249
(=20/0)	0.7	134	127	101	81	76	88	98	106	113	120	126	131	136	1,175

補足表 9-3 将来予測に上限下限ルールを適用した場合のパフォーマンス評価

a) 天然のみ加入を考慮。2023 年漁期は2016~2020 年漁期の平均放流資源尾数を考慮(仮定2)

				予測平均漁獲	 里	予測平均		管理目標	リスク(10: でも起きる				23~2032年 漁獲量の変動	
カテゴリ	漁獲管理 方策案	β	1年目 2024年 漁期	2~5年目平均 2025~2028年 漁期	6~10年目平均 2029~2033年 漁期	6年目 2029年 漁期	11年後 2034年 漁期	10年後に目標 管理基準値案 を上回る確率	親魚量が限界 管理基準値案 を下回る	漁獲量が 半減する	平均年変 動AAV※	平均減少 率ADR※	最大減少 率MDR※	最低漁獲 量(トン) MinC※
0 E	Base	0.9	92	83	98	303	376	1%	100%	0%	0.08	-0.06	-0.10	74
0 E	Base	0.8	82	80	94	322	406	5%	100%	0%	0.07	-0.04	-0.07	72
0 E	Base	0.7	73	75	89	347	443	13%	100%	0%	0.05	-0.03	-0.04	69
0 1	L0y_CV5	0.9	120	106	88	197	338	6%	100%	0%	0.05	-0.05	-0.05	81
0 1	L0y_CV5	0.8	120	106	87	197	342	7%	100%	0%	0.05	-0.05	-0.05	80
0 1	L0y_CV5	0.7	120	106	86	197	346	8%	100%	0%	0.05	-0.05	-0.05	79
0 1	.0y_CV10	0.9	114	89	84	265	420	17%	100%	0%	0.09	-0.09	-0.10	70
0 1	.0y_CV10	0.8	114	89	80	266	442	21%	100%	0%	0.09	-0.09	-0.10	67
0 1	.0y_CV10	0.7	114	88	75	267	463	24%	100%	0%	0.09	-0.09	-0.10	65
0 1	L0y_CV20	0.9	101	81	96	303	383	3%	100%	0%	0.09	-0.10	-0.19	73
0 1	L0y_CV20	0.8	101	77	93	319	411	7%	100%	0%	0.09	-0.11	-0.20	70
0 1	.0y_CV20	0.7	101	72	88	337	446	15%	100%	0%	0.10	-0.13	-0.20	64

[※]AAV (annual average variation) は漁獲量の増減を考慮した変動の大きさを表す指標。ADR (average depletion ratio) と MDR (maximum depletion ratio) は前年と比べて漁獲量が減少した場合のみに注目した指標であり、管理期間中に漁獲量が減少した場合、その減少率の平均をとったものが ADR、最大値をとったものが MDR である。MinC (minimum catch) は期間中の最低漁獲量である。

b) 天然のみ加入を考慮。2023年漁期は2017~2021年漁期の平均放流資源尾数を考慮(仮定3)

	カテ 漁獲管理			予測平均漁獲 (トン)	量	 予測平均 (ト:		管理目標	リスク(10: でも起きる				23~2032年 急獲量の変動	
カテ	漁獲管理 方策案	β -	1年目 2024年 漁期	2~5年目平均 2025~2028年 漁期	6~10年目平均 2029~2033年 漁期	6年目 2029年 漁期	11年後 2034年 漁期	10年後に目標 管理基準値案 を上回る確率	親魚量が限界 管理基準値案 を下回る	漁獲量が 半減する	平均年変 動AAV※	平均減少 率ADR※	最大減少 率MDR※	最低漁獲 量(トン) MinC※
0 Ba	ase	0.9	91	83	98	303	376	1%	100%	0%	0.08	-0.06	-0.10	74
0 Ba	ase	0.8	82	80	94	322	406	5%	100%	0%	0.07	-0.04	-0.07	72
0 Ba	ase	0.7	73	75	89	346	443	13%	100%	0%	0.06	-0.03	-0.04	69
0 10	Dy_CV5	0.9	120	106	88	195	337	6%	100%	0%	0.05	-0.05	-0.05	81
0 10	Dy_CV5	0.8	120	106	87	195	341	7%	100%	0%	0.05	-0.05	-0.05	80
0 10	Dy_CV5	0.7	120	106	86	195	345	8%	100%	0%	0.05	-0.05	-0.05	79
0 10	Oy_CV10	0.9	114	89	84	263	421	17%	100%	0%	0.09	-0.09	-0.10	69
0 10	Oy_CV10	0.8	114	88	79	265	442	21%	100%	0%	0.09	-0.09	-0.10	67
0 10	Oy_CV10	0.7	114	88	75	265	464	24%	100%	0%	0.09	-0.09	-0.10	64
0 10	Oy_CV20	0.9	101	81	96	302	383	3%	100%	0%	0.09	-0.10	-0.20	73
0 10	Oy_CV20	0.8	101	77	93	319	411	7%	100%	0%	0.10	-0.11	-0.20	69
0 10	Oy_CV20	0.7	101	72	88	336	446	15%	100%	0%	0.11	-0.14	-0.20	63

[※]AAV (annual average variation) は漁獲量の増減を考慮した変動の大きさを表す指標。ADR (average depletion ratio) と MDR (maximum depletion ratio) は前年と比べて漁獲量が減少した場合のみに注目した指標であり、管理期間中に漁獲量が減少した場合、その減少率の平均をとったものが ADR、最大値をとったものが MDR である。MinC (minimum catch) は期間中の最低漁獲量である。

c) 将来にわたり、2016~2020年漁期の平均放流資源尾数を考慮(仮定4)

	漁獲管理 方策案	β	予測平均漁獲量			予測平均親魚量 (トン)		管理目標	リスク(10年間に1度 でも起きる確率)		管理期間10年間(2023~2032年漁期)で 予測される漁獲量の変動			
カテ ゴリ			1年目 2024年 漁期	2~5年目平均 2025~2028年 漁期	6~10年目平均 2029~2033年 漁期	6年目 2029年 漁期	11年後 2034年 漁期	10年後に目標 管理基準値案 を上回る確率	親魚量が限界 管理基準値案 を下回る	漁獲量が 半減する	平均年変 動AAV※	平均減少 率ADR※	最大減少 率MDR※	最低漁獲 量(トン) MinC※
0 B	0 Base		93	103	134	388	486	21%	100%	0%	0.07	-0.04	-0.05	89
0 B	Base	0.8	84	97	128	419	535	32%	100%	0%	0.06	-0.02	-0.02	83
1 B	Base	0.7	74	90	121	454	591	50%	100%	0%	0.07	-0.02	-0.01	74
0 1	0y_CV5	0.9	120	108	115	344	556	38%	100%	0%	0.05	-0.05	-0.05	100
0 1	0y_CV5	0.8	120	107	110	347	584	44%	100%	0%	0.05	-0.05	-0.05	97
11	0y_CV5	0.7	120	106	103	349	616	54%	100%	0%	0.05	-0.05	-0.05	94
0 1	0y_CV10	0.9	114	100	129	383	515	28%	100%	0%	0.08	-0.08	-0.10	92
0 1	0y_CV10	0.8	114	96	121	396	560	37%	100%	0%	0.08	-0.09	-0.10	88
11	0y_CV10	0.7	114	93	113	409	610	52%	100%	0%	0.08	-0.09	-0.10	84
0 1	0y_CV20	0.9	101	101	134	388	486	21%	100%	0%	0.08	-0.11	-0.15	86
0 1	0y_CV20	0.8	101	94	128	417	535	32%	100%	0%	0.09	-0.14	-0.20	80
11	0y_CV20	0.7	101	87	121	446	591	50%	100%	0%	0.10	-0.15	-0.20	76

[※]AAV (annual average variation) は漁獲量の増減を考慮した変動の大きさを表す指標。ADR (average depletion ratio) と MDR (maximum depletion ratio) は前年と比べて漁獲量が減少した場合のみに注目した指標であり、管理期間中に漁獲量が減少した場合、その減少率の平均をとったものが ADR、最大値をとったものが MDR である。MinC (minimum catch) は期間中の最低漁獲量である。

d) 将来にわたり、2017~2021年漁期の平均放流資源尾数を考慮(仮定5)

カテ	漁獲管理 方策案	β -	予測平均漁獲量 (トン)			予測平均親魚量 (トン)		管理目標	リスク(10年間に1度 でも起きる確率)		管理期間10年間(2023~2032年漁期)で 予測される漁獲量の変動			
ゴリ			1年目 2024年 漁期	2~5年目平均 2025~2028年 漁期	6~10年目平均 2029~2033年 漁期	6年目 2029年 漁期	11年後 2034年 漁期	10年後に目標 管理基準値案 を上回る確率	親魚量が限界 管理基準値案 を下回る	漁獲量が 半減する	平均年変 動AAV※	平均減少 率ADR※	最大減少 率MDR※	最低漁獲 量(トン) MinC※
0 B	0 Base		93	102	132	383	479	19%	100%	0%	0.07	-0.04	-0.05	89
0 B	0 Base		83	96	127	413	528	31%	100%	0%	0.06	-0.02	-0.02	82
0 B	0 Base		74	89	120	448	583	47%	100%	0%	0.07	-0.02	-0.01	74
0 1	0 10y_CV5		120	107	113	334	548	37%	100%	0%	0.05	-0.05	-0.05	98
0 1	0 10y_CV5		120	106	108	337	574	42%	100%	0%	0.05	-0.05	-0.05	96
1 1	1 10y_CV5		120	106	102	338	604	50%	100%	0%	0.05	-0.05	-0.05	93
0 1	0 10y_CV10		114	99	126	376	510	28%	100%	0%	0.08	-0.08	-0.10	90
0 1	0 10y_CV10		114	95	119	389	555	36%	100%	0%	0.08	-0.09	-0.10	87
0 1	0 10y_CV10		114	92	111	400	603	49%	100%	0%	0.08	-0.09	-0.10	83
0 1	0 10y_CV20		101	100	133	383	479	19%	100%	0%	0.08	-0.11	-0.16	85
0 1	0 10y_CV20		101	93	127	411	528	31%	100%	0%	0.09	-0.14	-0.20	79
0 1	0y_CV20	0.7	101	86	119	439	582	46%	100%	0%	0.10	-0.15	-0.20	75

※AAV(annual average variation)は漁獲量の増減を考慮した変動の大きさを表す指標。ADR(average depletion ratio)と MDR(maximum depletion ratio)は前年と比べて漁獲量が減少した場合のみに注目した指標であり、管理期間中に漁獲量が減少した場合、その減少率の平均をとったものが ADR、最大値をとったものが MDR である。MinC(minimum catch)は期間中の最低漁獲量である。