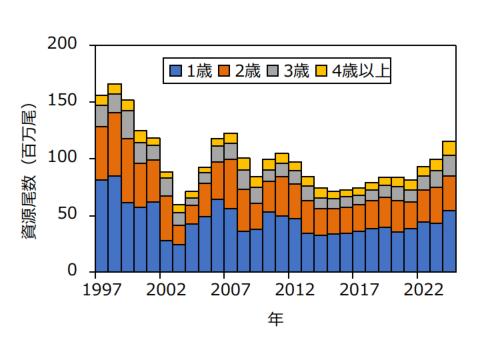

ソウハチ (日本海南西部系群) ①

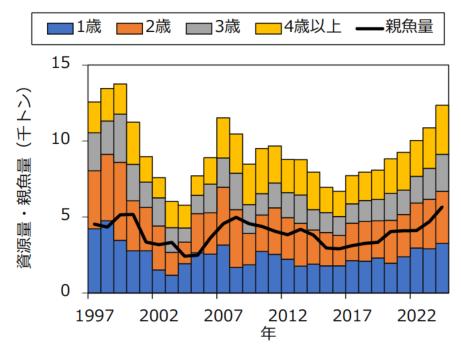
ソウハチは日本周辺に広く生息し、本系群はこのうち主に日本海南西海域(兵庫県〜山口県)に分布する群である。

図1 分布域


図2 漁獲量の推移

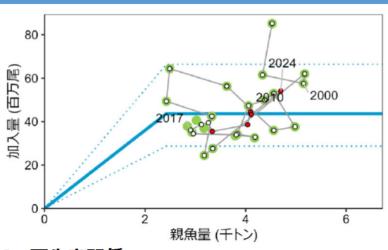
1985年以前は沖底の み、1986年以降は小 底を含む。最大値は 1999年の5.5千トン である。近年は概ね 2.0千~3.0千トンの 範囲で推移していた が、2024年は大きく 減少して最低値の1.3 千トンとなった。

図3 年齢別漁獲尾数の推移


漁獲尾数は2012年以降減少傾向にある。 漁獲物の年齢組成は、例年2歳魚が全体の 概ね半数を占めている。

ソウハチ (日本海南西部系群) ②

図4 年齢別資源尾数の推移


資源の年齢組成を尾数でみると、1歳(青)、2歳(橙)を中心に構成されている。資源尾数は2016年以降増加傾向を示している。

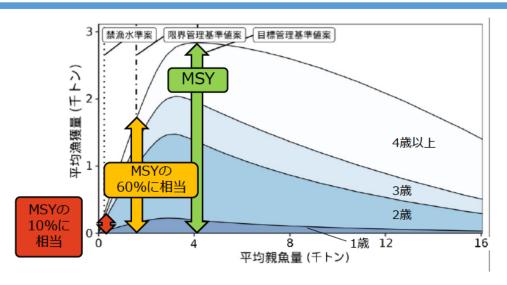


図5 年齢別資源量と親魚量の推移

資源量は2017年以降増加傾向を示し、2024年は12.4千トンと推定された。親魚量も資源量と似た傾向を示しており、2024年は5.7千トンと推定された。

ソウハチ(日本海南西部系群)③

図6 再生産関係

1997~2018年の親魚量と1998~2019年の加入量 (本系群では1歳魚の資源尾数)に対し、加入量の変 動傾向(再生産関係から予測されるよりも良い加入ま たは悪い加入が一定期間続く効果)を考慮したホッ ケー・スティック型再生産関係(青太線)を適用した。 図中の青点線は、再生産関係の下で実際の親魚量と加 入量の90%が含まれると推定される範囲である。

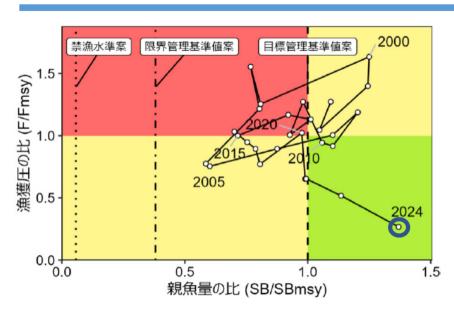

緑丸は再生産関係を推定した時の観測値、白丸と赤丸 (直近5年)は2025年度資源評価で更新された観測値 である。図中の数字は加入年を示す。

図7 管理基準値案と禁漁水準案

最大持続生産量(MSY)を実現する親魚量(SBmsy)は4.1千トンと算定される。目標管理基準値としてはSBmsy、限界管理基準値としてはMSYの60%が得られる親魚量、禁漁水準としてはMSYの10%の漁獲量が得られる親魚量を提案する。

目標管理基準値案	限界管理基準値案	禁漁水準案	2024年の親魚量	MSY	2024年の漁獲量
4.1千トン	1.6千トン	0.2千トン	5.7千トン	2.8千トン	1.3千トン

ソウハチ (日本海南西部系群) ④

図8 神戸プロット(神戸チャート)

親魚量 (SB) は、2001~2006年、2012年、2014~2020年に最大持続生産量 (MSY) を実現する親魚量 (SBmsy) を下回っていた。2011、2021、2022年は4.1千トンでSBmsy と同程度であった。2023、2024年の親魚量はSBmsyを上回った。2024年の親魚量は、SBmsyの1.37倍である。漁獲圧 (F) は、2017年以降、わずかに上回った2020年を除き、SBmsyを維持する漁獲圧 (Fmsy) を下回っており、2024年の漁獲圧はFmsyの0.27倍である。

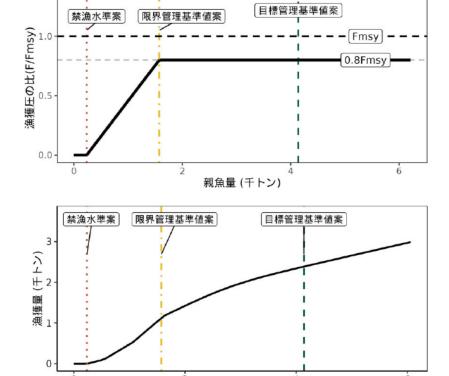


図9 漁獲管理規則案(上図:縦軸は漁獲圧、下図: 縦軸は漁獲量)

親魚量 (千トン)

Fmsyに乗じる調整係数であるβを0.8とした場合の漁 獲管理規則案を黒い太線で示す。下図の漁獲量につ いては、平均的な年齢組成の場合の漁獲量を示した。

ソウハチ (日本海南西部系群) ⑤

将来の親魚量(千トン)

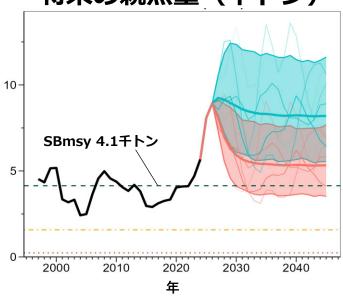
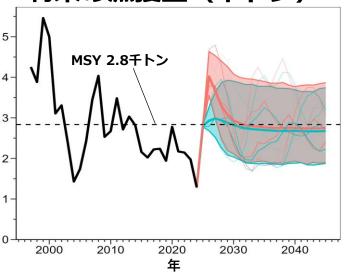



図10 漁獲管理規則案の下での親魚量と漁獲量の将来予測(現状の漁獲圧は参考)

βを0.8とした場合の漁獲管理規則案に基づく 漁獲を継続した場合の将来予測結果を示す。

親魚量の平均値は目標管理基準値案以上で維持され、漁獲量の平均値は2032年頃よりMSY付近で推移する。

将来の漁獲量(千トン)

漁獲管理規則案に基づく将来予測 (β=0.8の場合)

現状の漁獲圧に基づく将来予測

実線は予測結果の平均値を、網掛けは予測結果 (1千回のシミュレーションを試行)の90%が 含まれる範囲を示す。

---- MSY

— — — — 目標管理基準値案

---- 限界管理基準値案

**************** 禁漁水準案

ソウハチ(日本海南西部系群)⑥

表1.	将来の平均親魚量	(チトン)
-----	----------	-------

2036年1	こ親魚量	が目標管	查理基準	値案(4.1	チトン)を	を上回る	確率

β	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	
1.0			7.2	5.7	4.9	4.5	4.3	4.2	4.1	4.1	4.1	4.1	42%
0.9			7.6	6.3	5.6	5.2	4.9	4.8	4.7	4.7	4.7	4.7	65%
0.8	8.1	8.9	8.1	7.0	6.3	5.9	5.7	5.5	5.5	5.4	5.4	5.4	86%
0.7			8.5	7.7	7.1	6.8	6.5	6.4	6.3	6.3	6.2	6.2	96%
現状の漁獲圧			9.2	9.1	8.9	8.8	8.6	8.5	8.4	8.3	8.3	8.3	100%

表2. 将来の平均漁獲量(千トン)

β	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
1.0		4.8	4.0	3.4	3.1	3.0	2.9	2.8	2.8	2.8	2.8	2.8
0.9		4.4	3.9	3.4	3.1	3.0	2.9	2.8	2.8	2.8	2.8	2.8
0.8	2.8	4.0	3.7	3.3	3.1	2.9	2.9	2.8	2.8	2.8	2.8	2.8
0.7		3.6	3.4	3.2	3.0	2.9	2.8	2.8	2.7	2.7	2.7	2.7
現状の漁獲圧		2.9	3.0	2.9	2.9	2.8	2.8	2.7	2.7	2.7	2.7	2.7

漁獲管理規則案に基づく将来予測において、βを0.7~1.0の範囲で変更した場合と現状の漁獲圧(2022~2024年の平均:β=0.56相当)の場合の平均親魚量と平均漁獲量の推移を示す。2025年の漁獲量は予測される資源量と現状の漁獲圧により仮定し、2026年から漁獲管理規則案に基づく漁獲を開始する。

βを0.8とした場合、2026年の平均漁獲量は4.0千トン、2036年に親魚量が目標管理基準値案を上回る確率は86%と予測される。

※ 表の値は今後の資源評価により更新される。