令和6(2024)年度マダラ北海道太平洋の資源評価

水産研究·教育機構

水産資源研究所 水産資源研究センター (濵邉昂平・境 磨・千村昌之・ 千葉 悟・濱津友紀)

開発調査センター

参画機関:北海道立総合研究機構中央水産試験場、北海道立総合研究機構釧路水産試験場 青森県産業技術センター水産総合研究所、漁業情報サービスセンター、海洋生 物環境研究所

要約

本資源の資源状態について、1985~2023年漁期の漁獲量と沖合底びき網漁業(以下、「沖 底」という)の100トン以上のかけまわし船におけるマダラの標準化した1網当たり漁獲 量(以下、「沖底標準化 CPUE」という)を用いて、平衡状態を仮定しない余剰生産モデ ル (プロダクションモデル)で推定された資源量の相対値(平均を1として規格化した値) に基づいて評価した。本資源の漁獲量は 1987 年漁期の 2.93 万トンをピークに 2003 年漁期 まで減少して、その後 2012 年漁期まで増加した。2013~2020 年漁期の漁獲量は 1.57 万~ 1.82 万トンで推移したが 2021 年漁期に 2.65 万トンと大幅に増加した。2023 年漁期は前年 から減少し 2.28 万トン、直近 5 年間(2019~2023 年漁期)の平均漁獲量は 2.26 万トンで あった。余剰生産モデルで推定された資源量の相対値(以下、「資源量指標値」という) は、1985~2003 年漁期にほぼ横ばいで推移したのち 2004~2012 年漁期に増加して、2013 年漁期以降は平均を大きく上回っていた。2022 年漁期の資源量の相対値は 1985 年漁期以 降最も高かったが、2023 年漁期は減少した。直近 5 年間(2019~2023 年漁期)の資源量指 標値は増加傾向にある。1985~2023 年漁期の資源量指標値に累積正規分布をあてはめたと ころ、現状(2023年漁期)は93.8%の資源水準であると評価された。令和6年3月に開催 された「資源管理方針に関する検討会」および「水産政策審議会」を経て、本資源の資源 管理基本方針に漁獲シナリオが定められた。漁獲シナリオにおける目標管理基準値(目標 水準)は資源水準 80%、限界管理基準値(限界水準)は資源水準 56%である。現状の資源水準 は、この目標管理基準値(目標水準)を上回った。漁獲シナリオに対応した漁獲管理規則で は、直近5年間の平均漁獲量を増減させる係数を算出する。現在の資源水準を漁獲管理規 則に当てはめると、漁獲量を増減させる係数は 1.071 となった。直近 5 年間(2019~2023 管理年度)の平均漁獲量は2.25万トンであった。以上の結果から算出された2025管理年 度の ABC は 2.41 万トンであった。なお、直近 5 年間の平均漁獲量を漁期年で集計した場 合の 2025 年漁期の算定漁獲量は 2.42 万トンであった。

要 約 表

	資源 水準	漁獲量を増減 させる係数(α)	資源量 指標値	説明
目標管理基準値 (目標水準)	80.0%	1.000	1.47	資源量指標値の時系列を累積正 規分布に当てはめた場合に 80% 水準に相当する値
限界管理基準値 (限界水準)	56.0%	0.887	1.08	資源量指標値の時系列を累積正 規分布に当てはめた場合に 56% 水準に相当する値
現状の値 (2023 年漁期)	93.8%	1.071	1.86	ABC を算出する際に直近 5 年間 の漁獲量に掛ける係数は、目標水 準と限界水準に対する現状の値の 水準によって規定される

	資源量指標值	漁期年	管理年度
年	(余剰生産モデルで推定され	(4月~翌年3月)の	(7月~翌年6月)の
	た資源量の相対値)*	漁獲量(万トン)	漁獲量(万トン)
2019	1.74	1.78	1.60
2020	1.74	1.73	1.79
2021	2.06	2.65	2.68
2022	2.09	2.88	2.78
2023	1.86	2.28	2.39
平均	1.90	2.26	2.25

^{*}平均を1とした相対値を示す。

2025 管理年度の ABC (万トン)	2.41

コメント:

- ・ ABC の算定には、令和6年3月に開催された「資源管理方針に関する検討会」で取り纏められ「水産政策審議会」を経て定められた漁獲シナリオに対応した2系資源の漁獲管理規則を用いた。
- ・ 漁獲シナリオに定められた目標管理基準値(目標水準)は資源水準80%、限界管理基準値(限界水準)は資源水準56%である。これらの水準値で規定される2系資源の漁獲管理規則に直近年の資源水準を当てはめて、直近5年間(2019~2023管理年度)の平均漁獲量を増減させる係数(1.071)を求めた。以上より算定したABCは2.41万トンであった。
- ・ 直近5年間(2019~2023年漁期)の平均漁獲量に漁期年での集計値を用いた場合の2025 年漁期の算定漁獲量は2.42万トンであった。
- ・ ABC および算定漁獲量は百トン未満を四捨五入した値である。

1. データセット

資源評価に使用したデータセットは以下のとおり。

データセット	基礎情報、関係調査等
漁獲量•漁獲努力漁	北海道沖合底びき網漁業漁獲成績報告書(水産庁)
	太平洋北区沖合底びき網漁業漁獲成績報告書(水産庁)
	主要港漁業種類別水揚げ量(北海道、青森県)

本資源の漁期は4月~翌年3月である。

2. 生態

(1) 分布・回遊

本資源の分布域は北海道太平洋の沿岸から陸棚斜面域、津軽海峡および陸奥湾である (図 2-1、三島 1989)。

(2) 年齢・成長

北海道太平洋では被鱗体長が2歳でおよそ40 cm、3歳で53 cm、4歳で63 cm、5歳で71 cm、6歳で76 cm に成長する(図2-2、服部ほか1992)。

(3) 成熟·産卵

産卵場は分布域全体に散在し、産卵親魚は沖合から沿岸へ移動して産卵を行う(水産庁研究部 1986、三島 1989)。北海道太平洋における産卵期は 12 月下旬~翌年 3 月で、成熟開始年齢は雄が 3 歳、雌が 4 歳である(Hattori et al. 1992、1993、濱津 1996)。北海道周辺における系群構造はよく分かっていないが、産卵場は北海道の沿岸域全体に散在し、各繁殖群の回遊範囲は限定されていると考えられている(服部 1994)。ただし、陸奥湾産卵群は回遊範囲が比較的広く、標識放流の結果から、陸奥湾で産卵後に多くの個体が北海道太平洋沿岸へ索餌回遊して、翌産卵期に再び陸奥湾に戻ると考えられている(福田ほか 1985、三浦ほか 2019)。

(4) 被捕食関係

漂泳生活をしている幼稚魚期は主にカイアシ類を、底生生活に入ってからは主に魚類、 甲殼類、頭足類および貝類を捕食しており(北海道区底曳資源研究集団 1960、竹内 1961、 三島 1989、Wang et al. 2022)、標準体長が 40 cm より大きい個体になると魚食性が強くな ることが報告されている(Wang et al. 2022)。一方、捕食者は海獣類である(Goto and Shimazaki 1998)。

3. 漁業の状況

(1) 漁業の概要

北海道太平洋において、マダラは沖合底びき網漁業(以下、「沖底」という)に加え、 刺網、はえ縄などの沿岸漁業によって漁獲されている。ほぼ周年漁獲されるが、冬季~春 季に漁獲量が多い。沖底の漁獲量は十勝~釧路沖で多い。また、北海道根拠の沖底船に加 えて東北地方根拠の沖底船も操業している。沿岸漁業の漁獲量が多いのは根室管内である (補足資料 7)。

(2) 漁獲量の推移

本資源の漁獲量は、1987 年漁期の 2.93 万トンをピークに減少して 2003 年漁期は 0.86 万トンであった(図 3-1、表 3-1)。その後増加して 2012 年漁期に 1.93 万トンとなり、2013~2020 年漁期は 1.57 万~1.82 万トンで推移した。2021 年漁期に前年から大きく増加し 2.65 万トン、2022 年漁期は 2.88 万トンの漁獲量であった。2023 年漁期は前年から 0.6 万トン減少して 2.28 万トンとなった。直近 5 年間(2019~2023 年漁期)の平均漁獲量は 2.26 万トンであった。漁獲量全体に占める沖底漁獲量の割合は、1985~1988 年漁期は 5~6 割であったが、その後減少して 1991~1996 年漁期は 1~2 割であった。1997 年漁期以降は増加して 3~6 割で推移しており、2023 年漁期は約 4 割であった。

陸奥湾周辺海域における漁獲量は、1985 年漁期以降 1991 年漁期までは 1,000 トンを超えていたが、その後急減して 1999~2007 年漁期は 100 トン未満であった (補足表 7-1)。 2008~2013 年漁期はやや増加して 90~249 トンで推移した。2014 年漁期以降は大幅に増加して、2016 年漁期以降の漁獲量は 1,000 トンを超えており、漁獲量が多かった 1980 年代後半と同じ水準で推移しており、2023 年漁期は過去最高の 2,709 トンであった。

関連した情報として、千島列島南西海域(ロシアでの海区名:南クリル)でのロシアの TAC は 2023 年に 14,000 トン、2024 年に 12,200 トンであった。漁獲量や漁獲物の特性など の情報は得られていない。

(3) 漁獲努力量

本資源に対する沖底によるマダラの漁獲量と漁獲努力量(有漁網数)の大部分を100トン以上のかけまわし船が占めており(千村・船本2011)、直近5年間(2019~2023年漁期)は沖底によるマダラ漁獲量の93~96%、有漁網数の91~93%を占めた。そのため、100トン以上の沖底かけまわし船による月別船別漁区別集計データに基づくマダラの有漁網数を漁獲努力量として示した。有漁割合は、最も低かった1996年漁期に89.7%であり、1985~2023年漁期の平均は98.1%であった(図3-2)。北海道太平洋(中海区千島を除く)における漁獲努力量は、1990年代以降減少して、2002年漁期以降は1.0万~1.4万網でほぼ横ばいであったが、2020年漁期からは減少傾向にある(図3-3、表3-2)。2023年漁期の漁獲努力量は0.9万網であった。なお、沿岸漁業(刺網等)の漁獲努力量に関する情報は得られていない。

4. 資源の状態

(1) 資源評価の方法

資源評価は「令和 6 (2024) 年度 漁獲管理規則および ABC 算定のための基本指針 (FRA-SA2024-ABCWG02-01)」(水産研究・教育機構 2024) での 2 系資源の管理規則で用いられる資源水準の判定方法に基づき、過去の資源量指標値に累積正規分布をあてはめ、現状 (2023 年漁期) の資源水準を評価した (補足資料 1)。資源評価に用いる資源量指標値には、平衡状態を仮定しない Pella-Tomlinson 型余剰生産モデルである SPiCT (連続時間にお

ける確率的な状態空間余剰生産モデル: Pedersen and Berg 2017) にて推定した資源量相対値を用いた(補足資料 1、2)。余剰生産モデルでの推定には 1985~2023 年漁期の漁獲量と、標準化された沖底かけまわし船のマダラの単位努力量当たり漁獲量(以下、「沖底標準化 CPUE」という)を用いた(補足資料 6)。沖底標準化 CPUE の算出方法の詳細は別資料 FRA-SA2024-SC01-701(濵邉ほか 2024a)に示した。余剰生産モデルのパラメータ推定等の詳細は補足資料 5 および別資料 FRA-SA2024-SC01-702(濵邉ほか 2024b)に示した。

(2) 資源量指標値の推移

余剰生産モデルに用いた沖底標準化 CPUE の推移を図 4-1 および表 3-2 に示した。1985~2023 年漁期の平均を 1 として規格化した沖底標準化 CPUE は、2004 年漁期以降増加傾向を示し、2010~2022 年漁期は 1.21~2.04 で平均を上回った。2023 年漁期は前年漁期からほぼ横ばいで推移し 1.89 であった。余剰生産モデルでは 2 つのモデル設定でよく似た資源量相対値(平均を 1 として規格化した資源量)が推定されたため、その相対値の平均値を資源量指標値として用いた(補足資料 5)。資源量指標値は、1985~2003 年漁期は 0.36~0.74 で緩やかな変化を伴い推移したのち、2004 年漁期以降は増加傾向が続き、2012 年漁期には 1.66 となった。2013 年漁期以降の変化は小さく 2020 年漁期には 1.74 であったが、2021 年漁期に 2.06 に増加し、2022 年漁期には 2.09 と 1985 年漁期以降で最高値となった。2023 年漁期は減少して 1.86 となったが、1985 年漁期以降で 3 番目に高い値であった(図4-2、表 4-1)。直近 5 年間(2019~2023 年漁期)の資源量指標値は増加傾向にある。資源量指標値が 2021 年漁期以降高水準である傾向は、参考情報のコホート解析で推定された資源量の推移においても確認された(補足図 9-2)。余剰生産モデルから推定された直近年の資源量は Bmsy よりも大きく、漁獲圧は Fmsy よりも小さい可能性が高いと考えられた(補足図 5-3)。

(3) 資源水準

本系群の資源量指標値(1985~2023年漁期)に累積正規分布をあてはめたところ、現状(2023年漁期)の資源量指標値は93.8%水準であると評価された(図4-2、表4-1)。資源量指標値の年変動の大きさを示す指標 AAV (Average Annual Value)は0.09であり、資源量指標値が平均で毎年9%程度上昇もしくは低下していた。

(4) 漁獲物の銘柄組成

釧路港と室蘭追直港における沖底で漁獲されたマダラの銘柄別水揚げ量をそれぞれ図43と図4-4に示した。釧路港には道東海域の沖底漁獲物の大半が水揚げされ、2010~2020年漁期はそれ以前に比べてマダラの水揚げ量が多くなった。2020年漁期までは1~3歳である8尾入(箱当たり8尾、以下同じ)より小型魚の銘柄が水揚げの大半を占めてきた。2021年漁期は前年に比べて小・ポン銘柄の水揚げ量が減少したが、2022年漁期以降は再び増加した。2022年漁期は4尾入と6尾入が主体となっていたのに対して、2023年漁期は2尾入や3尾入といった大型の銘柄に加え、8尾入や10尾入、小・ポン等の小型銘柄の割合も比較的高かった。

室蘭追直港には襟裳以西海域の沖底漁獲物のおよそ半分以上が水揚げされる。1~3歳で

ある8尾入より小型魚の銘柄がマダラの水揚げ量全体に占める割合は、道東の釧路港よりも低くて1~6割である。2016、2017年漁期はマダラの水揚げ量が少なく、室蘭追直港の水揚げ量が襟裳以西海域のマダラの沖底漁獲量全体に占める割合も低かった。その後は全体の水揚げ量が増加し、2021年漁期は前年よりも水揚げ量が大きく増加した。2021年漁期は3~5尾入の銘柄が高い割合を占めたのに対して、12尾入と小たら銘柄の水揚げ量は減少しており、小型魚の銘柄が占める割合は2007年漁期以降最も低かった。直近2年間は水揚げ量が減少傾向にあり、2023年漁期は前年と比べて多くの銘柄で水揚げ量が少なくなったが、3尾入はほぼ横ばいであったのに加え、8尾入りは前年より水揚げ量が多くなった。

5. 2025 年漁期の ABC の算定

(1) 漁獲管理規則

本資源の ABC の算定には、資源管理基本方針で定められた漁獲シナリオ(https://www.jfa.maff.go.jp/j/suisin/index.html)に対応する2系資源の漁獲管理規則を用いた。2系資源の漁獲管理規則は、基準となる水準に対する資源量指標値の大小関係に基づき、近年の平均漁獲量から次漁期の漁獲量を計算するための係数を求める仕組みである(補足資料 2)。資源量指標値に基づく直近年の資源水準が目標管理基準値(目標水準)を上回る場合は、次漁期の漁獲量を直近5年間の平均漁獲量よりも増加させるが、目標管理基準値(目標水準)を下回る場合は、次漁期の漁獲量を平均漁獲量よりも削減する。限界管理基準値(限界水準)よりも下回る場合は、より大きく漁獲量を削減して資源の回復を促す。漁獲シナリオに定められた目標管理基準値(目標水準)は資源水準80%、限界管理基準値(限界水準)は資源水準56%である。これらの目標管理基準値(目標水準)および限界管理基準値(限界水準)は、資源量指標値ではそれぞれ1.47および1.08であった。直近年(2023年漁期)の資源量指標値は1.86であり、その資源水準は目標管理基準値(目標水準)を上回った。直近年の資源水準に対応する漁獲量を増減させる係数(α)は、漁獲管理規則に当てはめることで1.071と算出された(図5-1、5-2、補足表2-1)。

(2) ABC の算定

漁獲シナリオに対応した 2 系資源の漁獲管理規則に基づき ABC を算定した。漁獲量を増減させる係数 (α) は 1.071、直近 5 年間(2019~2023 管理年度)の平均漁獲量 (C) は 22,476 トンであり(補足資料 4)、 α ×C より 2025 管理年度のマダラ北海道太平洋の ABC は 2.41 万トンと算定された(図 5-3、補足表 2-2)。

なお、漁期年で集計した直近 5 年間 (2019~2023 年漁期) の平均漁獲量 (C) は 22,637 トンであり、これを漁獲管理規則に当てはめることで算定される 2025 年漁期のマダラ北海道太平洋の算定漁獲量は 2.42 万トンとなった (図 5-3)。

6. その他

本資源に含まれるマダラ陸奥湾産卵群に対しては平成 19 (2007) 年度~平成 23 (2011) 年度は資源回復計画において、平成 24 (2012) 年度以降は資源管理計画の下、陸奥湾内の底建網漁業操業統数の削減や、湾内の底建網漁業、小型定置網漁業および青森県八戸を根

拠地とする沖底の農林漁区 777-3 区および 777-6 区における放卵・放精後の親魚と小型魚の再放流、湾内における種苗の放流など同計画に基づいた取り組みが継続して行われている。

本資源では、未成魚を成熟するまで獲り残して再生産に振り向けることが資源を持続的 に利用するうえで重要であると考えられるため、未成魚に対して過度の漁獲圧がかからな いようにすることが望ましい。

7. 引用文献

- 千村昌之・船本鉄一郎 (2011) 平成 22 年度マダラ北海道の資源評価. 平成 22 年度我が国周辺の漁業資源評価 第 2 分冊, 水産庁・水産総合研究センター, 857-877.
- 福田慎作・横山勝幸・早川 豊・中西広義 (1985) 青森県陸奥湾湾口部におけるマダラ成魚の標識放流について. 栽培技研, 14, 71-77.
- Goto, Y. and K. Shimazaki (1998) Diet of Steller sea lions around the coast of Rausu, Hokkaido, Japan. Biosphere Conservation, 1, 141-148.
- 演邉昂平・境 磨・千村昌之・千葉 悟・濱津友紀 (2024a) 令和 6 (2024) 年度マダラ北 海道太平洋の沖底 CPUE 標準化に関する資料. (FRA-SA2024-SC01-701).
- 演邉昂平・境 磨・千村昌之・千葉 悟・濱津友紀 (2024b) 令和 6 (2024) 年度マダラ北 海道太平洋の状態空間余剰生産モデルによる資源解析に関する資料. (FRA-SA2024-SC01-702).
- 濱津友紀 (1996) 北海道東部太平洋沿岸におけるマダラの成熟度と孕卵数. 漁業資源研究 会議西日本底魚部会報, 23, 3-9.
- 服部 努·桜井泰憲·島崎健二 (1992) マダラの耳石薄片法による年齢査定と成長様式. 日 水誌, 58, 1203-1210.
- 服部 努 (1994) マダラの成長、成熟および繁殖生態に関する研究. 北海道大学博士号論文, 140 pp.
- Hattori, T., Y. Sakurai and K. Shimazaki (1992) Maturation and reproductive cycle of female Pacific cod in waters adjacent to the southern coast of Hokkaido, Japan. Nippon Suisan Gakkaishi, 58, 2245-2252.
- Hattori, T., Y. Sakurai and K. Shimazaki (1993) Maturity and reproductive cycle based on the spermatogenesis of male Pacific cod, Gadus macrocephalus, in waters adjacent to the southern coast of Hokkaido, Japan. Sci. Rep. Hokkaido Fish. Exp. Stn., 42, 265-272.
- 北海道区底曳資源研究集団 (1960) タラ.「北海道中型機船底曳網漁業」,北海道機船漁業協同組合連合会,札幌,63-64.
- 三島清吉 (1989) 日本周辺におけるマダラ (Gadus macrocephalus TILESIUS) の資源とその 生物学的特性. 北太平洋漁業国際委員会研究報告, 42, 172-179.
- 三浦太智・吉田雅範・山田嘉暢・野呂恭成・伊藤欣吾・東 信行 (2019) マダラ陸奥湾産卵 群の分布と回遊. 水産増殖, 67, 19-24.
- Pedersen, M. W., & Berg, C. W. (2017) A stochastic surplus production model in continuous time. Fish and Fisheries, 18, 226-243.
- 水産研究・教育機構 (2024) 令和 6 (2024) 年度漁獲管理規則および ABC 算定のための基本

指針. FRA-SA2024-ABCWG02-01, 水産研究・教育機構,横浜,23pp. https://abchan.fra.go.jp/references_list/FRA-SA2024-ABCWG02-01.pdf

水産庁研究部 (1986) 底びき網漁業資源, 234 pp.

竹内 勇 (1961) 北海道沿岸のタラ科魚類の餌料. 北水試月報, 18, 329-336.

Wang, R., Chimura, M., Sadayasu, K., Ishino, M., and Yamamura, O. (2022) Summer diet and feeding strategy of Pacific cod (*Gadus macrocephalus*) inhabiting the southern coast of Hokkaido, Japan. Marine Biology Research, 18(7–8), 435–447.

図 2-1. 北海道太平洋におけるマダラの分布

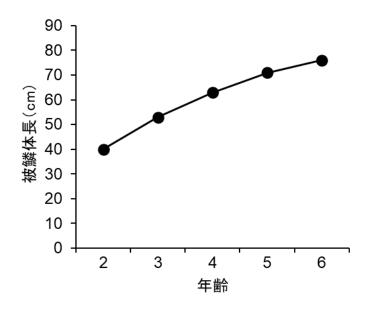


図 2-2. 北海道太平洋におけるマダラの年齢と成長の関係図 服部ほか (1992) より作図。

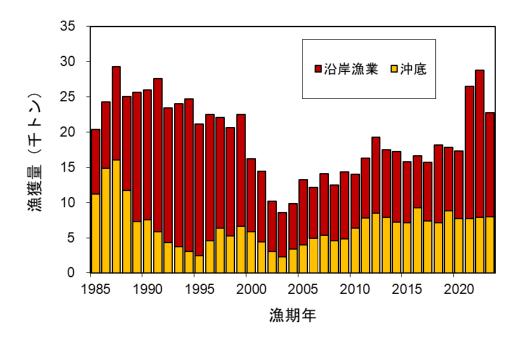


図 3-1. 漁獲量の推移 漁期年は4月~翌年3月。

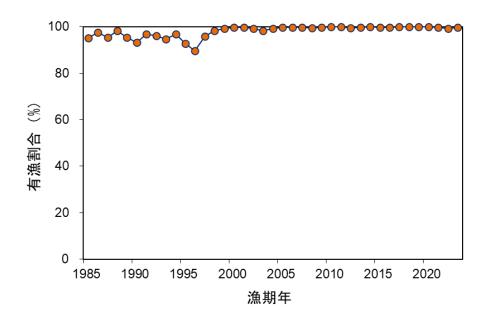


図 3-2. 北海道太平洋(中海区千島を除く)における沖底(かけまわし100トン以上)のマダラ有漁割合

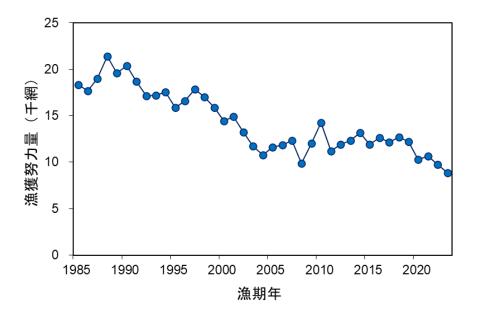


図 3-3. 北海道太平洋(中海区千島を除く)のマダラに対する沖底(かけまわし 100 トン以上)の漁獲努力量(有漁網数)

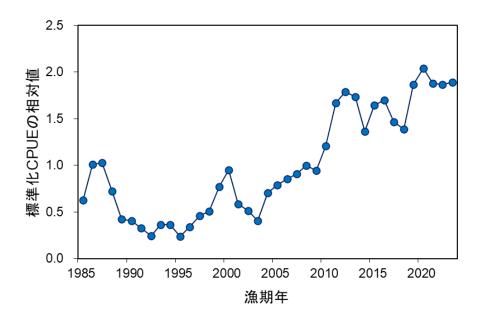


図 4-1. 余剰生産モデルに用いた沖底標準化 CPUE の推移 平均値を 1 として規格化した相対値を示した。

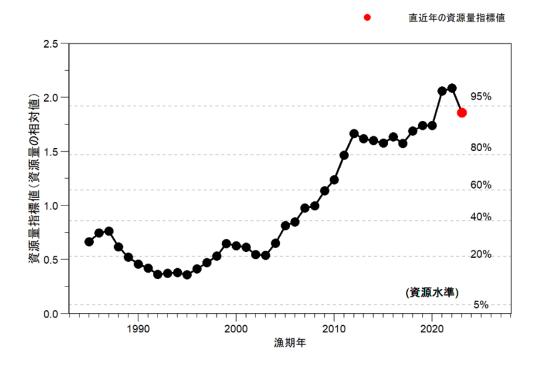


図 4-2. 余剰生産モデルにより推定された資源量の相対値の推移 図中のパーセント表示は累積正規分布で表した資源水準である。

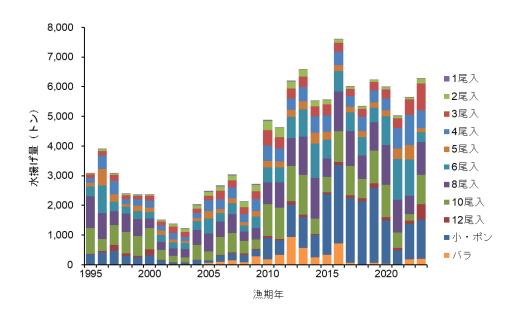


図 4-3. 釧路港における沖合底びき網漁業で漁獲されたマダラの銘柄別水揚げ量 銘柄別水揚げ箱数を基に、木箱は 1 箱 20 kg、発泡箱は 1 箱 15 kg として算出した。 2004 年漁期以前はバラ銘柄の水揚げ量データが得られていない。

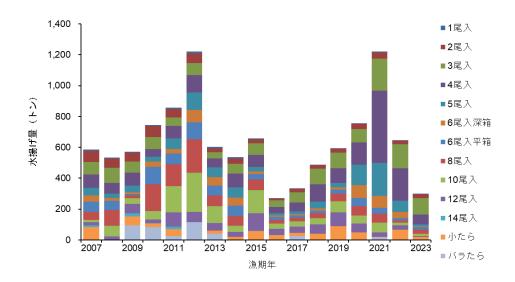


図 4-4. 室蘭追直港における沖合底びき網漁業で漁獲されたマダラの銘柄別水揚げ量 襟裳以西海域における漁獲物が水揚げされた 10 月〜翌年 3 月の銘柄別水揚げ箱数を 基に、発泡箱(深) は 1 箱 10〜17 kg、発泡箱(平) は 1 箱 10〜14 kg として算出し た。

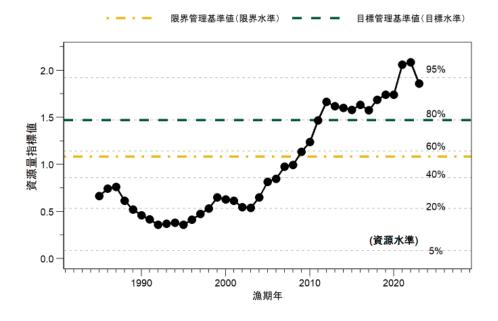
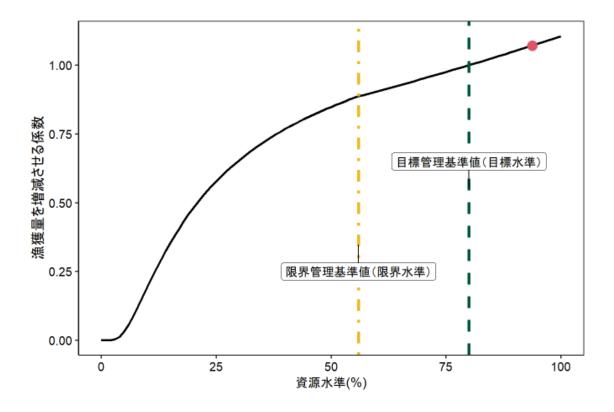



図 5-1. 資源量指標値の推移と目標管理基準値(目標水準)、限界管理基準値(限界水準) 灰点線は、資源量指標値(黒線)に累積正規分布を適用したときの資源水準を示す。 緑破線と黄一点鎖線はそれぞれ目標管理基準値(目標水準)と限界管理基準値(限界 水準)を示す。

図 5-2. 漁獲管理規則

黒線は前年の漁獲量に対する翌年の漁獲量の増減率 (α) であり、ABC を算出する際に基準となる直近 5 年間(2019~2023 管理年度)の漁獲量の平均値に乗じて漁獲量を増減させる係数を示す。緑破線と黄一点鎖線によりそれぞれ示される目標水準および限界水準に対する現状の資源水準の位置関係から、翌年の漁獲量の算出に用いるべき α が決まる。赤丸は 2023 年漁期の資源水準から定められる α を示す。

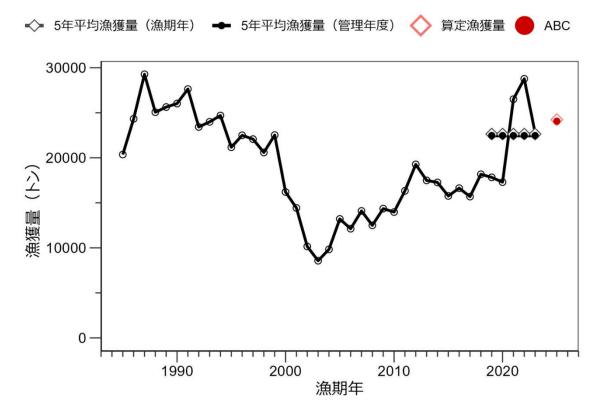


図 5-3. 漁獲量の推移と直近 5年間平均の漁獲量および ABC

白丸と黒実線は過去の漁獲量(漁期年で集計)を示す。黒丸と黒実線は直近5年間(2019~2023管理年度)の平均漁獲量を、赤丸は直近5年間(2019~2023管理年度)の平均漁獲量と漁獲量に乗じる係数から計算される2025管理年度のABCであり、これらを漁期年で計算したものをひし形で示す。

表 3-1. 北海道太平洋におけるマダラの漁業種類別漁獲量(トン)

漁期年	合計	沖底	沿岸漁業
1985	20,365	11,214	9,150
1986	24,331	14,837	9,494
1987	29,277	16,034	13,243
1988	25,065	11,697	13,368
1989	25,637	7,326	18,311
1990	26,027	7,550	18,478
1991	27,634	5,847	21,787
1992	23,429	4,300	19,128
1993	23,993	3,740	20,252
1994	24,697	3,070	21,626
1995	21,172	2,485	18,688
1996	22,498	4,567	17,931
1997	22,074	6,350	15,724
1998	20,595	5,266	15,328
1999	22,523	6,591	15,932
2000	16,203	5,866	10,337
2001	14,435	4,392	10,043
2002	10,157	3,076	7,080
2003	8,573	2,316	6,257
2004	9,833	3,402	6,432
2005	13,210	3,955	9,255
2006	12,128	4,920	7,208
2007	14,102	5,321	8,780
2008	12,503	4,561	7,942
2009	14,355	4,842	9,513
2010	13,977	6,336	7,641
2011	16,332	7,815	8,517
2012	19,268	8,502	10,766
2013	17,491	7,884	9,607
2014	17,267	7,205	10,062
2015	15,764	7,097	8,667
2016	16,630	9,280	7,349
2017	15,693	7,342	8,351
2018	18,170	7,152	11,017
2019	17,831	8,864	8,967
2020	17,300	7,685	9,615
2021	26,511	7,755	18,756
2022	28,775	7,863	20,912
2023	22,770	8,016	14,755

集計範囲:沖底 中海区襟裳以西、道東および千島。

沿岸漁業 1992 年漁期までは松前町大沢〜根室市と青森県外ヶ浜町〜大間町 奥戸、1993 年漁期以降は福島町〜根室市と青森県外ヶ浜町〜大間町奥戸。 漁期年は4月〜翌年3月。2022、2023 年漁期は暫定値。

表 3-2. 北海道太平洋のマダラに対する北海道根拠の沖底(かけまわし 100 トン以上)の 漁獲努力量と CPUE(月別集計値)

	有漁網数	有漁	有漁	標準化
漁期年	(千網)	CPUE(kg/網)	CPUE(平均=1)	CPUE(平均=1)
1985	18.3	331	0.88	0.62
1986	17.7	532	1.41	1.01
1987	19.0	467	1.24	1.03
1988	21.4	287	0.76	0.72
1989	19.6	200	0.53	0.42
1990	20.4	228	0.61	0.41
1991	18.7	136	0.36	0.33
1992	17.1	94	0.25	0.24
1993	17.2	166	0.44	0.36
1994	17.6	133	0.35	0.36
1995	15.9	98	0.26	0.24
1996	16.6	221	0.59	0.34
1997	17.9	269	0.71	0.46
1998	17.0	228	0.61	0.50
1999	15.9	293	0.78	0.77
2000	14.4	276	0.73	0.95
2001	14.9	235	0.62	0.58
2002	13.2	175	0.46	0.51
2003	11.7	139	0.37	0.41
2004	10.8	230	0.61	0.71
2005	11.6	260	0.69	0.79
2006	11.9	279	0.74	0.85
2007	12.4	292	0.78	0.91
2008	9.9	306	0.81	1.00
2009	12.1	312	0.83	0.95
2010	14.3	402	1.07	1.21
2011	11.2	510	1.35	1.67
2012	11.9	561	1.49	1.79
2013	12.3	555	1.47	1.74
2014	13.2	488	1.29	1.37
2015	11.9	545	1.45	1.65
2016	12.6	686	1.82	1.70
2017	12.2	576	1.53	1.46
2018	12.7	525	1.39	1.39
2019	12.2	681	1.81	1.87
2020	10.3	683	1.81	2.04
2021	10.6	681	1.81	1.88
2022	9.7	761	2.02	1.87
2023	8.9	851	2.26	1.89

試験操業を除く通常操業のみの値。

2023 年漁期は暫定値。

表 4-1. 余剰生産モデルで推定された資源量相対値(資源量指標値)と対応する資源水準

		設定2	平均	資源水準
			(資源量指標値)	(%)
1985	0.66	0.67	0.66	27.4
1986	0.74	0.75	0.74	32.3
1987	0.76	0.77	0.76	33.5
1988	0.61	0.62	0.61	24.5
1989	0.52	0.52	0.52	19.6
1990	0.46	0.46	0.46	16.6
1991	0.42	0.42	0.42	14.9
1992	0.36	0.36	0.36	12.6
1993	0.37	0.37	0.37	13.0
1994	0.38	0.38	0.38	13.3
1995	0.36	0.36	0.36	12.6
1996	0.41	0.41	0.41	14.6
1997	0.47	0.47	0.47	17.2
1998	0.53	0.53	0.53	20.1
1999	0.65	0.65	0.65	26.5
2000	0.63	0.63	0.63	25.2
2001	0.61	0.61	0.61	24.4
2002	0.54	0.54	0.54	20.7
2003	0.54	0.54	0.54	20.4
2004	0.65	0.65	0.65	26.5
2005	0.81	0.82	0.81	37.0
2006	0.85	0.85	0.85	39.3
2007	0.97	0.98	0.98	48.3
2008	0.99	1.00	1.00	49.7
2009	1.14	1.14	1.14	59.6
2010	1.24	1.24	1.24	66.5
2011	1.47	1.47	1.47	79.8
2012	1.67	1.66	1.66	88.3
2013	1.62	1.62	1.62	86.6
2014	1.60	1.60	1.60	85.9
2015	1.58	1.58	1.58	84.9
2016	1.64	1.63	1.63	87.2
2017	1.57	1.57	1.57	84.8
2018	1.69	1.69	1.69	89.1
2019	1.74	1.74	1.74	90.8
2020	1.74	1.74	1.74	90.8
2021	2.06	2.06	2.06	97.1
2022	2.09	2.08	2.09	97.4
2023	1.86	1.86	1.86	93.8

余剰生産量モデルでの資源解析にあたり、余剰生産量曲線の形状を規定するパラメータ nの事前分布の平均値に 2 ≥ 1.46 を与え、それぞれ設定 1 ≥ 2 ≥ 2 ≥ 1 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 3 ≥ 3 量推定値の相対値の平均を資源量指標値とした。いずれも平均を 1 ≥ 1 ≥ 3 ≥ 4 ≥ 4

資源水準は毎年の資源評価でのデータの追加とともに更新される。

補足資料 1 資源評価の流れ

1985~2023年漁期の漁獲量 沖合底びき網漁業(かけまわし)の標準化CPUE

> 標準化CPUEについては補足資料6および別文書 FRA-SA2024-SC01-701を参照

余剰生産モデルによる資源量指標値の推定

補足資料 5 および別文書 FRA-SA2024-SC01-702 を参照

2023年漁期の資源水準と直近5年間(2019~2023管理年度)の平均漁獲量を算出

漁獲シナリオに対応した漁獲管理規則に基づき、 漁獲量を増減させる係数 (α) を算出

2025管理年度ABCを算出

補足資料 2 評価結果の概要

補足表 2-1. 管理基準値および現状の値

	資源 水準	漁獲量を増減 させる係数(α)	資源量 指標値	説明
目標管理基準値 (目標水準)	80.0%	1.000	1.47	資源量指標値の時系列を累積正 規分布に当てはめた場合に 80% 水準に相当する値
限界管理基準値 (限界水準)	56.0%	0.887	1.08	資源量指標値の時系列を累積正 規分布に当てはめた場合に 56% 水準に相当する値
現状の値 (2023 年漁期)	93.8%	1.071	1.86	ABC を算出する際に直近 5 年間 の漁獲量に掛ける係数は、目標水 準と限界水準に対する現状の値の 水準によって規定される

補足表 2-2. ABC

2025 管理年度*の ABC(万トン)	2.41
----------------------	------

コメント:

- ・ ABC の算定には、令和6年3月に開催された「資源管理方針に関する検討会」で取り纏められ「水産政策審議会」を経て定められた漁獲シナリオに対応した2系資源の漁獲管理規則を用いた。
- ・ 漁獲シナリオに定められた目標管理基準値(目標水準)は資源水準80%、限界管理基準値(限界水準)は資源水準56%である。これらの水準値で規定される2系資源の漁獲管理規則に直近年の資源水準を当てはめて、直近5年間(2019~2023管理年度)の平均漁獲量を増減させる係数(1.071)を求めた。以上より算定したABCは2.41万トンであった。
- ・ 直近5年間(2019~2023年漁期)の平均漁獲量に漁期年での集計値を用いた場合の2025 年漁期の算定漁獲量は2.42万トンであった。
- ・ ABC および算定漁獲量は百トン未満を四捨五入した値である。

^{*}管理年度は7月~翌年6月。

補足資料3 2系資源の漁獲管理規則について

2 系資源の管理規則における漁獲管理規則(HCR)は、資源を目標水準(B_T)の周辺に推移させるように、直近年(t 年)の資源量指標値の水準(D_t)が目標水準を上回る場合は漁獲量を増加させ、下回る場合は漁獲量を削減させる。次漁期に推奨される漁獲量(すなわち ABC)は、直近の資源量指標値の水準に対応する係数(漁獲量を増減させる係数 α)を漁獲管理規則により設定し、これを現状の漁獲量(近年の漁獲量平均値)に乗じることで求める(下式 1)。限界水準(B_L)を下回った場合には、資源量指標値を目標水準により早く近づけるように α を大きく引き下げる。禁漁水準(B_B)を下回った場合には、漁獲量を 0 とする。係数 β はこの漁獲管理規則で算出される漁獲量全体を調整する係数であり通常は $\beta=1$ とする。

$$ABC = \alpha_t \cdot \beta \cdot \overline{C}_t = \exp\left[k_t \left(D_t - B_T\right)\right] \cdot \beta \cdot \overline{C}_t \tag{1}$$

ここで、krは、以下の通りとなる。

$$k_{t} = \begin{cases} \delta_{1} & \cdots & D_{t} > B_{L} \\ \delta_{1} + \delta_{2} \exp\left[\delta_{3}\log(AAV_{t}^{2} + 1)\right] \frac{B_{L} - D_{t}}{D_{t} - B_{B}} & \cdots & B_{B} < D_{t} \leq B_{L} \\ \infty & \cdots & D_{t} \leq B_{B} \end{cases}$$

$$(2)$$

漁獲量の増減速度は、調整係数 δ_1 、 δ_2 、 δ_3 による。ここで δ_2 は資源が少ない場合($B_B < D_t$ $\leq B_L$)に漁獲量を削減する速度に関する係数、 δ_3 は下式 3 の資源量指標値 I の年変動 (AAV) が大きい場合に漁獲量を抑える係数である。

$$AAV_t = \frac{1}{N} \sum_{u=1}^{t} \frac{2 |I_u - I_{u-1}|}{I_u + I_{u-1}}$$
(3)

直近 t 年の資源量指標値 I の水準 D_t は資源量指標値に累積正規分布を適用することにより $0\sim1$ の値として計算される(下式 4)。

$$D_t = \int_{-\infty}^{I_t} \varphi\left[\frac{\mathbf{x} - E(t)}{SD(t)}\right] d\mathbf{x} \tag{4}$$

ここで φ は標準正規分布、E(I)は資源量指標値の平均値、SD(I)は資源量指標値の標準偏差である。

「令和 6(2024)年度漁獲管理規則および ABC 算定のための基本指針(FRA-SA2024-ABCWG02-01)」(水産研究・教育機構 2024)では 2 系資源の基本の漁獲管理規則として、 B_T は 80%、 B_L はその 7 割の 56%、 B_B は 0% とし、調整係数(δ_1 、 δ_2 、 δ_3)にはそれぞれ 0.5、 0.4、0.4 を用いるとされている。これらのパラメータを用いた漁獲管理規則は、改正漁業法の施行前に用いられていた ABC 算定規則 2-1)(水産庁、水産研究・教育機構 2024)での漁獲管理規則よりも資源保護の効果が高く、かつ安定した漁獲量が得られることが、様々な資源状態を考慮した一般的なシミュレーション(MSE)で確認されている。本資源の漁獲シナリオでも、上記の基本的漁獲管理規則が採用された。

引用文献

- 水産研究・教育機構 (2024) 令和 6 (2024) 年度漁獲管理規則および ABC 算定のための基本指針. FRA-SA2024-ABCWG02-01, 水産研究・教育機構,横浜,23pp. https://abchan.fra.go.jp/references list/FRA-SA2024-ABCWG02-01.pdf
- 水産庁, 水産研究・教育機構 (2024) 令和 6 (2024) 年度 ABC 算定のための基本規則. FRA-SA2024-ABCWG02-02, 水産研究・教育機構,横浜,11pp. https://abchan.fra.go.jp/references_list/FRA-SA2024-ABCWG02-02.pdf

補足資料 4 漁期年と管理年度の漁獲量

本資源では、漁期年(4月~翌年3月)に基づく情報を資源評価に用いているが、資源管理基本方針で定められた漁獲シナリオでは管理年度(7月~翌年6月)に換算したABCの算定が求められている。そこで、漁期年および管理年度で集計した場合の直近5年分の漁獲量を補足表4-1に示した。

補足表 4-1. 直近 5年間の漁期年および管理年度の漁獲量

年	漁期年**で集計した場合の	管理年度***で集計した場合の
	漁獲量(トン)	漁獲量(トン)
2019	17,831	15,990
2020	17,300	17,911
2021	26,511	26,801
2022*	28,775	27,822
2023*	22,770	23,854
平均	22,637	22,476

^{* 2022}年、2023年の漁獲量は暫定値。

^{**} 漁期年(4月~翌年3月)での値。

^{***} 管理年度(7月~翌年6月)での値。

補足資料 5 余剰生産モデルを用いた検討

(1) 余剰生産モデルを用いた資源解析

本資源では平衡状態を仮定しない Pella-Tomlinson 型余剰生産モデル(プロダクションモデル)である SPiCT (連続時間における確率的な状態空間余剰生産モデル: Pedersen and Berg 2017) による検討を行った。解析は 1985~2023 年漁期の漁獲量と、1985~2023 年漁期の沖底かけまわし船(100 トン以上)による 1 網あたり漁獲量(CPUE、kg/網)を標準化したもの(以下、「沖底標準化 CPUE」とする)に基づき、R パッケージ spict(ver. 1.3.8)により行った。余剰生産モデルで推定するパラメータは、n、m、K、q、Bt、Ft、 σ_B 、 σ_I 、 σ_F である。このうち n は余剰生産量曲線の形状を規定するパラメータであり、n が 1 であれば Fox 型、2 であれば Schaefer 型の余剰生産モデルとなる。形状パラメータ n の値が大きいほど環境収容力 K に対する Bmsy(最大持続生産量を実現する資源量)の相対的な位置が大きくなる。m は決定論的な個体群動態のもとでの MSY の値に相当する。一般的に内的自然増加率 r と K には強い相関があることから、今回使用した余剰生産モデル SPiCT では、直接 r を推定するのではなく、m=rK/n(n/(n-1))と変形して m の値を推定したのちに r を計算している。その他、q は漁獲効率、 σ_B はプロセス誤差の大きさ、 σ_I は指標値の観測誤差の大きさ、 σ_F は漁獲係数のノイズの大きさ、 σ_F は漁獲係数の人である。

SPiCT はベイズ推定の一種である罰則付き最尤法を用いるため、パラメータ推定の際には事前分布を与えることが出来る。一般的に形状パラメータ n は推定が困難であるため、本解析では n の事前分布の平均値を 2 と与えた場合と、メタ解析結果(Thorson et al. 2012)におけるタラ目での値 1.46 を与えた場合について検討した。内的自然増加率 r の事前分布については、設定 1(Model 3)では Fishlife(Thorson 2020)のマダラの予測値 0.32 を与えて、設定 2(Model 6)では Fishlife の予測値を n で調整した値 0.15 について検討した(FRASA2024-SC01-702)。

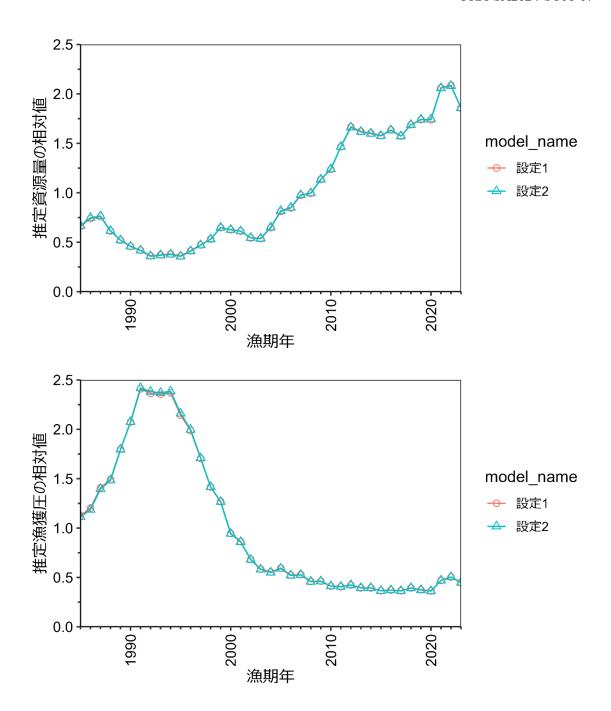
検討の結果、事前分布の平均値として形状パラメータでは 2 と 1.46、内的自然増加率 r では 0.32 と 0.15 とした場合の 2 つのモデルにて、適切な推定値が得られたと考えられた。 なお、事前分布は形状パラメータで標準偏差 0.5、内的自然増加率で標準偏差 1.0 の対数正規分布とした。モデルの仕様と推定されたパラメータと 90%信頼区間を補足表 5-1 に示した。解析方法の詳細は別資料 FRA-SA2024-SC01-702 に示した。

(2) 資源量指標値として用いる余剰生産モデルでの推定資源量の相対値

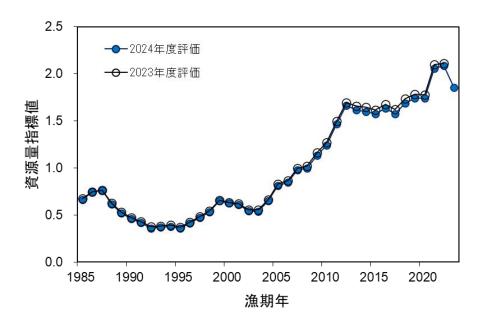
余剰生産モデルにおけるレトロスペクティブ解析の結果、漁獲量が急増した 2021 年漁期の前後で資源量の絶対値について推定値に差が見られ、形状パラメータなどの推定の不確実性も高いことが示唆された。一方で、資源量の相対値については比較的安定した推定ができていると考えられたため、令和5年度の資源評価と同様に、余剰生産モデルから推定された資源量の相対値を本資源の資源評価に用いることとした(補足図5-1)。適切な推定値が得られたと考えられた2つのモデルにおいて、1985~2023 年漁期の資源量の相対値の推移はモデル間でほぼ一致し、資源量の相対値についてモデルの推定結果は頑健であると考えられたことから、資源評価に用いる資源量指標値としては、これらのモデルの資源

量相対値の平均値を用いた。資源量相対値としては頑健性が確認されたものの、パラメータの推定値や絶対資源量について、データや資源の特性、モデルの不確実性などの観点から引き続き注視する必要があると考える。

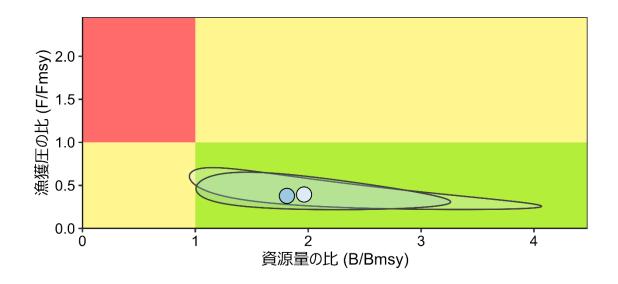
推定された漁獲圧の相対値についても2つのモデルで概ね一致した推移を示した(補足図5-1)。どちらのモデルでも資源量が低かった1990年代に高い漁獲圧となっており、1994年漁期から漁獲圧は低下したこと、2021年漁期の漁獲圧が上昇し、2022年漁期も2020年漁期以前と比べて高い漁獲圧で推移したことが確認された。


今年度評価と昨年度評価の資源量指標値の推移を補足図 5-2 に示した。2 つの資源量指標値の違いは、データの追加による余剰生産モデルの推定値の更新と、その平均が1となるように規格化し、モデル間で平均したことの違いが組み合わさったものである。今年度の資源量指標値は昨年度のものと推定期間中の挙動が概ね一致し、規格化した相対値が大きく変わらなかったことが確認された。

(3) 余剰生産モデルにて推定された直近年の資源状態


直近年(2023年漁期)の資源量や漁獲圧が最大持続生産量(MSY)を実現する水準(Bmsy および Fmsy)を上回っているか否かについて、余剰生産モデルによる推定結果を示した。適切な推定値が得られたと考えられた2つのモデルのうち設定1では直近年の資源量と Bmsy との比(B/Bmsy)は信頼区間も含めて1を上回ったが、設定2では信頼区間の下限は1を下回った。直近年の漁獲圧と Fmsy との比(F/Fmsy)は、いずれのモデルでも信頼区間を含めて1を下回ると推定された(補足図5-3)。

引用文献


- 濵邉昂平・境 磨・千村昌之・千葉 悟・濱津友紀 (2024) 令和 6 (2024) 年度マダラ北海 道太平洋の状態空間余剰生産モデルによる資源解析に関する資料. (FRA-SA2024-SC01-702).
- Pedersen, M. W., & Berg, C. W. (2017) A stochastic surplus production model in continuous time. Fish and Fisheries, **18**, 226-243.
- Thorson, J. T., Cope, J. M., Branch, T. A., & Jensen, O. P. (2012). Spawning biomass reference points for exploited marine fishes, incorporating taxonomic and body size information. Can. J. Fish. Aquat. Sci, 69, 1556-1568.
- Thorson, J. T. (2020). Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model. Fish and Fisheries, 21(2), 237–251.

補足図 5-1. 推定された資源量(上図)および漁獲圧(下図)の相対値の推移 余剰生産モデルにおいて、形状パラメータ n に 2 と 1.46 を、内的自然増加率 r に 0.32 と 0.15 をそれぞれ与えた場合(設定 1 および設定 2)の結果を示した。資源量、漁獲 圧ともに、平均値を 1 として規格化した相対値を示した。

補足図 5-2. 今年度評価と昨年度評価の資源量指標値の推移の比較 今年度評価は青丸、昨年度評価は白丸で示す。今年度評価と昨年度評価では、規格化 の分母となる平均値が違う点に留意。

補足図 5-3. 神戸プロット

余剰生産モデルにおいて、形状パラメータ n に 2 と 1.46 を、内的自然増加率 r に 0.32 と 0.15 をそれぞれ与えた場合(設定 1 および設定 2)の結果を示した。図中の丸印が直近年の資源状態を示し、濃い青丸が設定 1、薄い青丸が設定 2 を示す。色の付いた枠の範囲は 90%信頼区間を示す。

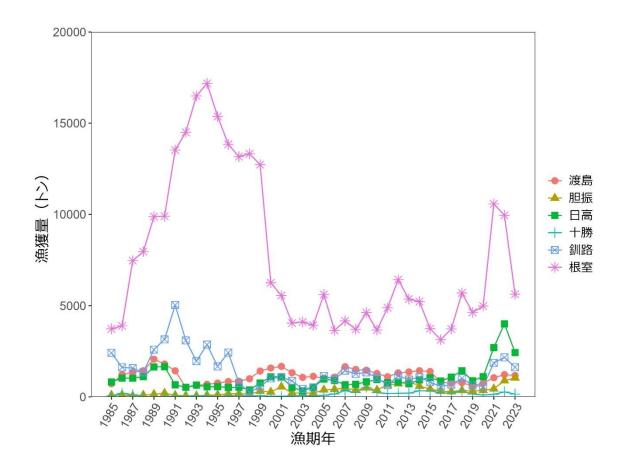
補足表 5-1. 各モデルの事前分布の設定とパラメータの推定値と信頼区間

モデル名	設定	主 1 (Model 3))	設定 2(Model 6)			
事前分布	・形状パラメー	タには2を引	Z均値とした	・形状パラメー	タには 1.46 る	を平均値とし	
の設定	事前分布(SI)= 0.5)を与え	た	た事前分布((SD=0.5)を与	えた	
	•内的自然增加	加率 r には 0.3	32を平均値	•内的自然增加。	加率 r には 0.	15を平均値	
	とした事前分	布(SD=1.0)を	を与えた	とした事前分布(SD=1.0)を与えた			
	下限 5%	推定値	上限 5%	下限 5%	推定値	上限 5%	
r	0.10	0.22	0.50	0.07	0.15	0.35	
K	212,358	586,914	1,622,110	200,889	556,934	1,544,009	
n	0.67	1.71	4.36	0.47	1.08	2.48	
σ_B	0.09	0.13	0.20	0.09	0.13	0.19	
σ_F	0.11	0.15	0.19	0.11	0.15	0.19	
q	1.22E-04	3.21E-04	8.46E-04	1.60E-04	3.82E-04	9.13E-04	
σ_I	0.14	0.20	0.29	0.14	0.20	0.29	
bkfrac	0.18	0.29	0.48	0.14	0.26	0.49	

補足資料 6 沖底標準化 CPUE の算出方法

余剰生産モデルで資源量指数データとして用いる沖底 CPUE について、操業月や操業海域など CPUE に含まれる資源の経年変動以外の要因の影響を取り除くために標準化を行った。使用したデータセットは 1985 年漁期以降の北海道沖合底びき網漁業漁獲成績報告書であり、月別・漁区別・漁船別の漁獲量および網数が記録されている。データセットのうち、中海区道東および襟裳以西の 100 トン以上のかけまわし船のデータ (20,792 件)を用いた。標準化には CPUE に対数正規分布を仮定した一般化線形モデルを適用した。本資源はマダラの漁獲がないデータの割合が多くの漁期年で 5%以下と低かったため、CPUE に微小な定数を足しこむ手法を用いた。CPUE を予測する説明変数として、漁期年、月、馬力階層、海域、根拠地、および漁期年と海域、月の交互作用を用いた。いずれもカテゴリカル変数として扱った。ベイズ情報量規準 (BIC)を用い、総当たり法で主効果および交互作用すべての組み合わせについて検討した結果、以下のモデルが最終的に選択された。

 $log(CPUE + constant) \sim Intercept + Year + month + hpower + Area + base + Year \times Area + month \times Area + error term$


ここで Year は漁期年、month は月、hpower は馬力階層、Area は海域、base は根拠地、const は CPUE の平均値の 10%の定数である。海域は、道東釧路以東(沖底小海区 31~35)、道東釧路以西(沖底小海区 30、36、37)、道南(沖底小海区 24~29)の 3 つに分けた。

上記のモデルで海域ごとに各漁期年の最小二乗平均値を算出し、各海域のマダラの有漁漁区数で重みづけして平均することで沖底標準化 CPUE を得た。平均値を1として規格化した沖底標準化 CPUE の推移を図 4-1 および表 3-2 に示した。詳細は別資料 (FRA-SA2024-SC01-701) に示す。

引用文献

演邉昂平・境 磨・千村昌之・千葉 悟・濱津友紀 (2024) 令和 6 (2024) 年度マダラ北海 道太平洋の沖底 CPUE 標準化に関する資料. (FRA-SA2024-SC01-701).

補足資料 7 海域別漁業種類別漁獲量および地域別の沿岸漁業漁獲量の推移

補足図 7-1. 北海道太平洋の沿岸漁業による地域別のマダラ漁獲量の推移

補足表 7-1. 北海道太平洋におけるマダラの海域別漁業種類別漁獲量 (トン)

>6 Um (.	北海	道太平洋	合計	陸奥湾		襟裳以西			道東	
漁期年	総計	沖底	沿岸漁業	沿岸漁業	海域計	沖底	沿岸漁業	海域計	沖底	沿岸漁業
1985	20,365	11,214	9,150	1,316	3,352	1,718	1,635	15,696	9,497	6,199
1986	24,331	14,837	9,494	1,408	4,083	1,712	2,370	18,841	13,125	5,716
1987	29,277	16,034	13,243	1,659	3,998	1,589	2,409	23,620	14,445	9,175
1988	25,065	11,697	13,368	1,381	4,167	1,568	2,599	19,517	10,129	9,388
1989	25,637	7,326	18,311	1,974	5,005	1,264	3,741	18,658	6,061	12,597
1990	26,027	7,550	18,478	1,717	5,054	1,537	3,517	19,256	6,012	13,244
1991	27,634	5,847	21,787	1,008	2,953	809	2,143	23,673	5,037	18,636
1992	23,429	4,300	19,128	383	1,540	510	1,030	21,506	3,790	17,715
1993	23,993	3,740	20,252	397	1,946	674	1,272	21,650	3,066	18,584
1994	24,697	3,070	21,626	198	1,853	604	1,250	22,645	2,467	20,179
1995	21,172	2,485	18,688	198	1,799	448	1,351	19,175	2,037	17,138
1996	22,498	4,567	17,931	63	2,131	642	1,489	20,305	3,926	16,379
1997	22,074	6,350	15,724	139	2,003	532	1,471	19,932	5,817	14,115
1998	20,595	5,266	15,328	206	2,174	741	1,433	18,214	4,526	13,688
1999	22,523	6,591	15,932	72	3,391	1,039	2,353	19,060	5,553	13,507
2000	16,203	5,866	10,337	71	3,778	1,030	2,748	12,354	4,836	7,518
2001	14,435	4,392	10,043	47	3,552	603	2,949	10,835	3,789	7,047
2002	10,157	3,076	7,080	37	2,325	433	1,892	7,795	2,643	5,152
2003	8,573	2,316	6,257	36	1,973	452	1,521	6,565	1,864	4,700
2004	9,833	3,402	6,432	74	2,224	504	1,719	7,535	2,897	4,638
2005	13,210	3,955	9,255	24	2,742	643	2,098	10,444	3,312	7,132
2006	12,128	4,920	7,208	25	3,002	916	2,086	9,101	4,003	5,097
2007	14,102	5,321	8,780	29	3,569	1,008	2,561	10,503	4,313	6,190
2008	12,503	4,561	7,942	181	3,181	778	2,404	9,141	3,784	5,357
2009	14,355	4,842	9,513	228	3,416	864	2,552	10,711	3,978	6,733
2010	13,977	6,336	7,641	90	3,370	989	2,381	10,518	5,347	5,171
2011	16,332	7,815	8,517	249	3,308	915	2,392	12,776	6,899	5,876
2012	19,268	8,502	10,766	138	4,140	1,465	2,676	14,990	7,038	7,953
2013	17,491	7,884	9,607	136	3,597	783	2,815	13,758	7,101	6,656
2014	17,267	7,205	10,062	475	3,616	850	2,766	13,176	6,355	6,822
2015	15,764	7,097	8,667	916	3,437	815	2,622	11,412	6,282	5,129
2016	16,630	9,280	7,349	1,428	2,541	705	1,835	12,661	8,575	4,086
2017	15,693	7,342	8,351	1,615	2,628	699	1,930	11,450	6,643	4,807
2018	18,170	7,152	11,017	1,416	2,967	708	2,259	13,786	6,444	7,342
2019	17,831	8,864	8,967	1,745	2,558	923	1,636	13,528	7,941	5,587
2020	17,300	7,685	9,615	1,731	2,833	782	2,051	12,735	6,903	5,832
2021	26,511	7,755	18,756	1,983	4,974	1,301	3,673	19,554	6,454	13,100
2022	28,775	7,863	20,912	2,407	6,762	1,085	5,677	19,605	6,778	12,828
2023	22,770	8,016	14,755	2,709	5,022	628	4,394	15,039	7,388	7,652

集計範囲:沖底 襟裳以西は中海区襟裳以西、道東は中海区道東および千島。

沿岸漁業 陸奥湾は青森県外ヶ浜町~大間町奥戸、襟裳以西は 1992 年漁期までは松前町大沢~えりも町えりも、1993 年漁期以降は福島町~えりも町えりも、 道東はえりも町庶野~根室市。

2022、2023 年漁期は暫定値。

補足資料 8 中海区千島における沖底の漁獲努力漁と CPUE

北海道太平洋の中海区千島における沖底(100 トン以上のかけまわし船)の漁獲努力量(マダラの有漁網数)と有漁操業の CPUE を補足表 8-1 に示す。中海区千島では沖底の漁獲量や漁獲努力量が漁獲規制の影響を受けるため、CPUE が資源状態を反映していない可能性が高いと考えられる。このため、中海区千島の漁獲量は北海道太平洋の沖底漁獲量に含めたが、漁獲努力量は北海道太平洋の漁獲努力量に含めず、CPUE も資源評価に用いなかった。なお、2015 年漁期以降は中海区千島における操業がなかった。

補足表 8-1. 中海区千島における北海道根拠の沖底(かけまわし 100 トン以上)の漁獲努力量と CPUE(月別集計値)

漁期年	漁獲努力量(千網)	CPUE(kg/網)
1985	5.1	164
1986	3.9	250
1987	4.1	349
1988	3.3	547
1989	2.0	543
1990	0.7	732
1991	1.2	962
1992	1.1	1,011
1993	0.5	252
1994	0.2	299
1995	0.7	347
1996	0.4	335
1997	0.2	625
1998	0.1	603
1999	0.2	1,006
2000	0.5	457
2001	0.4	229
2002	1.1	112
2003	1.2	107
2004	1.5	98
2005	1.3	57
2006	1.5	91
2007	1.4	102
2008	1.5	99
2009	1.1	85
2010	0.6	130
2011	0.7	118
2012	0.5	160
2013	0.4	139
2014	0.1	1,618

試験操業を除く通常操業のみの値。2015年漁期以降は中海区千島における操業がなかった。

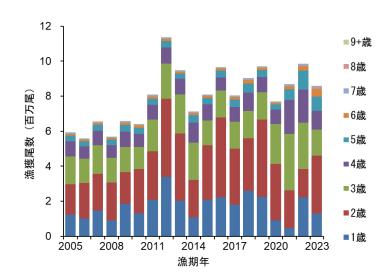
補足資料 9 コホート解析による資源量等の試算

本資源について、2005 年漁期以降の年齢別漁獲尾数を推定してコホート解析による資源量の試算を行った。チューニングは沖底 CPUE を用いてオメガ法により行った。

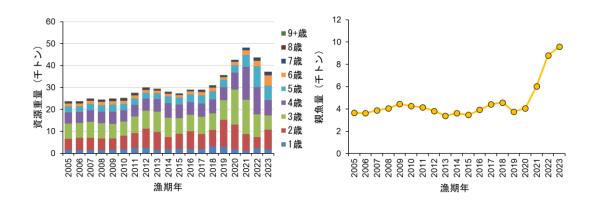
北海道太平洋沿岸の年齢別漁獲尾数は、沖底と沿岸漁業の漁業種類別に、襟裳以西と道東の2海域それぞれについて推定した。陸奥湾周辺海域の年齢別漁獲尾数は青森県産業技術センター水産総合研究所が推定した値を用いた。本資源の年齢別漁獲尾数を補足図9-1に示す。2018年漁期から減少していた1歳魚漁獲尾数は2022年漁期に増加した。この2021年級群は2歳となった2023年漁期にも多く漁獲されていた。2023年漁期は前年と比べて、3歳以上の漁獲尾数は減少した。本資源の年齢別漁獲尾数と沖底CPUE(補足資料6)を用いて、年齢別の資源尾数、資源重量、漁獲係数をコホート解析により推定した。コホート解析では生活史に基づき4月を起点とし、1歳~9+歳の年齢別に各値を求めた。推定する漁獲係数(ターミナルF)は最終年最高齢のFとし、選択率更新法によって推定した。年齢別資源尾数Nの計算にはPope(1972)の式を用い、プラスグループの資源尾数については平松(1999)の方法を用いた。自然死亡係数Mは、商業漁獲物および調査船調査漁獲物で観察された最高年齢である10歳を寿命として田内・田中の式(田中1960)から0.25とした。資源量および親魚量の計算に用いた年齢別体重と雌個体の年齢別成熟率(仮定値)をそれぞれ補足表9-1と補足表9-2に示した。チューニングは沖底標準化CPUEを用いてオメガ法により行った。計算方法等の詳細は別資料(FRA-SA2024-SC01-703)に示す。

資源量と親魚量の推定値を補足図 9-2 に示す。1 歳以上の資源量推定値は、2005~2018 年漁期に増減を繰り返しながらもほぼ横ばいで推移したのち、2019 年漁期以降に大きく増加して、2021 年漁期は最も多くなった。2022 年漁期以降は減少傾向であったが、2023 年漁期は3.7 万トンほどと過去と比べても高い水準であった。前年と比べて 2023 年漁期は2歳魚と6歳魚の資源量が増加した一方で、3歳魚、4歳魚の資源量は減少した。親魚量推定値は、2005~2020 年漁期は0.76万~0.97万トンの範囲でほぼ横ばいで推移して、2023 年漁期は過去最高値の前年から減少して1.64万トンであった。2021 年漁期に資源量が最高値となり、近2年間は減少傾向にあるものの、その水準はこれまでと比べても高いことは、状態空間余剰生産モデルで推定された資源量の相対値と似た傾向であることが確認された。

親魚量と加入量の関係(再生産関係)の推定や MSY を実現する親魚量(SBmsy)および漁獲圧(Fmsy)を計算するためには親魚量の経年的な変動幅が狭く、再生産関係の推定がバイアスする可能性が考えられる。生物学的特性値について、年齢別成熟率は仮定値を用いたこともあり、今後も検討する必要があると考えている。また年齢別自然死亡係数や年齢別体重も暫定的に使用したものであるため引き続き精査する必要がある。これらの生物学的特性値は資源量の絶対値に影響するだけでなく、VPA に基づいた 1 系管理(1A、1Bルール)の管理基準値や将来予測結果にも影響することから、現段階では VPA による資源量推定結果を評価結果に用いることは難しく、経年的な資源量の推移や年齢組成の変化について参考情報として使用することが妥当であると考える。


引用文献

濵邉昂平・境 磨・千村昌之・千葉 悟・濱津友紀 (2024) 令和 6 (2024) 年度マダラ北海 道太平洋のコホート解析に関する資料. (FRA-SA2024-SC01-703).


平松一彦 (1999) VPA の入門と実際. 水産資源管理談話会報, 日本鯨類研究所, 20, 9-28.

Pope, J.G. (1972) An investigation of the accuracy of virtual population using cohort analysis. Res. Bull. inst. Comm. Northw. Atlant. Fish., 9, 65-74.

田中昌一 (1960) 水産生物の Population Dynamics と漁業管理. 東海水研報, 28, 1-200.

補足図 9-1. 本資源の年齢別漁獲尾数

補足図9-2. コホート解析で推定された本資源の年齢別資源量(左)と親魚量(右)

補足表 9-1. 年齢別体重 (kg)

年齢	1歳	2歳	3歳	4歳	5 歳	6歳	7歳	8歳	9+歳
体重	0.1	0.7	1.7	2.8	3.9	4.9	5.8	6.4	7.2

補足表 9-2. 雌個体の年齢別成熟率 (%)

年齢	1歳	2歳	3 歳	4歳	5 歳	6歳	7歳	8歳	9+歳
体重	0	0	0	50	100	100	100	100	100