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Introduction 

The stock size estimation method used for stock assessment in Japan has mostly been VPA, which uses the catch 

in number at age as base information. However, when reliable catch in number at age data is not available, but catch 

size and the stock abundance index are available, then Harvest Control Rules (HCR) based on empirical evidence 

(bypassing the need for stock size estimation), such as the Group 2 Rules, have been used to calculate the acceptable 

biological catch (ABC). Meanwhile, expansions in the number of species covered by total allowable catch (TAC) 

policies under the revised Fishery Act have led to a spike in demand for the provision of decisive results of stock 

status according to Kobe plots, and for estimation of absolute stock size. In recent years, stock assessment methods 

have made it possible to perform stock size estimates according to assumptions and prior distribution despite a low 

volume of data, and it is recommended that these methods will also be applied more widely in performing stock size 

estimates for Japanese stocks. 

Production models make it possible to theoretically estimate stock size and maximum sustainable yield (MSY) 

reference points based on only the stock abundance index and catch size. Because these models don’t require high 

volumes of data, they have the longest track record of being used as stock assessment models. However, the parameter 

estimation method based on production model population dynamics equation(s) with assumptions at equilibrium 

(equilibrium method) is known to create an estimation bias in stock size estimates and MSY reference points (Mace 

and Mace 2001). Accordingly, there were years when the use of production models, or MSY reference points as 

estimated using production models with assumptions at equilibrium, were avoided intentionally (Larkin 1977) . 

However, these issues are being resolved thanks to the widespread use of appropriate methods for estimating 

parameters of production models without assumptions at equilibrium (Mace and Mace 2001), the development of 

Bayesian production models using prior distribution to compensate for low volumes of data (McAllister et al. 2011), 

and the development of state-space production models which estimate process errors using state-space models (Millar 

and Meyer 2000). Furthermore, these advancements are being distributed as R packages (SPiCT: Pedersen & Berg 

2017; JABBA: Winker et al. 2018), which have allowed for production models to be used as stock assessment models 

1 The 2022 guidelines drafts have been adopted as the official guidelines. The main changes are: 1) feedback on the 
results of trial applications of production models to 11 stocks in 2022, 2) inclusion of information relating to regime shift 
revisions, 3) inclusion of information relating to the use of abundance estimated by VPA, 4) consideration of prior 
distribution in carrying capacity (K) and fishing gear efficiency (q), and 5) the addition of equations (6) through (10) as 
described in the appendix on documentation. 
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more easily (cf. Wang et al. 2020, see also Miyagawa et al. 2021). 

 There is sufficient data available to apply production models to Group 2 stocks in Japan (stocks for which 

numbers at age estimates cannot be performed, but for which stock abundance index and catch is available), so the 

applicability of these models must be investigated. The aforementioned software tools (JABBA, SPiCT) are designed 

to obtain estimates that are stable as possible (although these innovations are behind-the-scenes), which leads to 

different estimate results when the same data is processed by different software tools2 . When introducing these 

production models to stock assessments in Japan, it is important to fully understand these behind-the-scenes settings, 

while agreeing on which assumptions should be made to achieve stability in estimates. 

These guidelines are intended to present the procedures and points that should be kept in mind when performing 

stock assessments by fitting Japanese stock data in production models, and to explain utilization of stock assessment 

results according to the degree of uncertainty. There is a presumption that SPiCT is used as the software tool for state-

space production models, but there are cases when it is also appropriate even if different software is used for assigning 

prior distribution or utilization of stock assessment models. If necessary, data which was pseudo-generated using 

simulations (Example 1) (https://github.com/ichimomo/frapmr/blob/dev/raw-data/example1.csv), or the results of 

trial applications of production models to 11 stocks in 2022 (Table 1) (Stock Assessment Working Group 2023a), can 

be included as examples of estimated results or model diagnostics results. We also included an appendix with an 

example of how to present the results of trial applications of production models in documentation. Figures were made 

using both SPiCT and frapmr (https://github.com/ichimomo/frapmr, not available to the public). 

 

 

Production Model Fitting Procedures 

The production model used here is a Pella-Tomlinson state-space production model (Equation 1). 

𝐵𝐵𝑡𝑡+1 = �𝐵𝐵𝑡𝑡 + 𝑟𝑟
𝑛𝑛−1𝐵𝐵𝑡𝑡 �1− �𝐵𝐵𝑡𝑡

𝐾𝐾
�
𝑛𝑛−1

� − 𝐹𝐹𝑡𝑡𝐵𝐵𝑡𝑡� exp(𝜀𝜀𝑡𝑡),  𝜀𝜀𝑡𝑡~𝑁𝑁(−0.5𝜎𝜎 𝐵𝐵
2 ,  𝜎𝜎 𝐵𝐵

2 )   (Equation 1) 

𝐼𝐼𝑡𝑡,𝑖𝑖 = 𝑞𝑞𝑖𝑖𝐵𝐵𝑡𝑡 exp�𝑒𝑒𝑡𝑡,𝑖𝑖�, 𝑒𝑒𝑡𝑡,𝑖𝑖~N(0,  𝜎𝜎𝐼𝐼,𝑖𝑖2 ) 

In this equation, 𝐵𝐵𝑡𝑡 and 𝐹𝐹𝑡𝑡 are the biomass and fishing mortality in year 𝑡𝑡, 𝑟𝑟 is the intrinsic natural growth rate, 

𝑛𝑛 is the shape parameter, 𝐾𝐾 is the carrying capacity, 𝜀𝜀𝑡𝑡 is the process error in year t, 𝜎𝜎𝐵𝐵 is the magnitude of the 

process error, 𝐼𝐼𝑡𝑡,𝑖𝑖 is the number 𝑖𝑖 stock abundance index in year 𝑡𝑡, 𝑞𝑞𝑖𝑖 is the fishing gear efficiency for the number 

𝑖𝑖  stock abundance index, 𝑒𝑒𝑡𝑡,𝑖𝑖  is the observation error for the number 𝑖𝑖  stock abundance index, and 𝜎𝜎𝐼𝐼,𝑖𝑖  is the 

magnitude of the observation error for the number 𝑖𝑖 stock abundance index.  

As discussed above, SPiCT is a differential production model, so Equation 1 is slightly different from the 

 
2 Because JABBA is based on a Bayesian production model, it is necessary to assume some form of prior distribution 

in estimated parameters, and estimates cannot be performed without applying assumptions. Meanwhile, SPiCT allows for 
estimates to be obtained without any data, which makes it possible to perform estimates in time increments shorter than 1 
year. This is slightly different from the discrete models, which commonly rely on population dynamics equations. In 
addition, because the default settings are designed to stabilize estimates, parameter estimation is performed using a weak 
prior distribution for all estimated parameters. 
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population dynamics equations assumed within SPiCT. SPiCT allows users to process data in time increments shorter 

than 1 year (dteuler) to obtain numerical solution for differential population dynamics equations. However, it is also 

possible to imitate population dynamics by difference equation such as Equation 1 by setting dteuler to 1 (Pedersen 

and Berg 2017). And in practice, we found that data generation using a difference production model yielded the best 

true parameters when dteuler was set to 1 (Stock Assessment Working Group 2022b). Based on this, we established 

default settings that provided a structure equivalent to Equation 1 when applying SPiCT to Japanese stocks (dteuler 

= 1). With these settings, the meanings of the parameters will be the same as the discrete population dynamics 

equation as shown in Equation 1. However, in cases when convergence is not achieved with dteuler = 1, or when you 

want to utilize data with shorter time increments, dteuler can be adjusted appropriately. There are also many difference 

production models which do not estimate fishing mortality, and instead perform calculations using the exploitation 

rate 𝐶𝐶𝑡𝑡 𝐵𝐵𝑡𝑡⁄  (Winker et al. 2018, and others). Meanwhile, there are other ways which SPiCT is different from other 

production models, such as assuming fishing mortality F as an unobserved process which follows a time series 

random walk model. 

 

Preparation Step 1: Gather findings on biological characteristics and fishing of target species 

First, it is necessary to gather information to assist in judging whether the parameters estimated using the 

production model are appropriate. If it is not possible to easily estimate these parameters in a model without any 

assumptions, then you should use the gathered findings as reference information for parameters. In addition to 

findings on biological characteristics and fishing as shown below, it is extremely important to gather information 

relating to regime shift and the presence or absence of other long-term trends in changes in productivity. 

 

Intrinsic natural growth rate (r) 

Parameters which describe the behavior of the entire population, such as the intrinsic natural growth rate 𝑟𝑟, are 

more difficult to perform estimation and judgement compared to parameters based on observation of individuals such 

as growth equations, age of maturity, and asymptotic length. However, the integration of a database of biological 

characteristics of each fish species (FishBase: Froese and Pauly 2022) and a database which accumulates population 

dynamics parameters obtained from stock assessment models (RAMLegacy database: Ricard et al. 2012) makes it 

possible to see the relationship between population dynamics parameters and biological characteristics at the 

individual level (Thorson 2020). The code by Thorson (2020) for obtaining projected values for r for each species is 

distributed as an R package called FishLife (https://github.com/James-Thorson-NOAA/FishLife), which enables us 

to gather fundamental findings on what kind of r can generally be expected for each target stock. It is strongly advised 
to obtain projected values for 𝑟𝑟𝑓𝑓𝑖𝑖𝑓𝑓ℎ from this package as part of the information gathering stage. Estimates for 𝑟𝑟𝑓𝑓𝑖𝑖𝑓𝑓ℎ 

from FishLife correspond to the slope near the origin of the surplus production curve, assuming a Schaefer production 

model with the shape parameter (n) set to 2 (this will be discussed in the next section). When 𝑛𝑛 ≠ 2 in Equation 1, 
the slope near the origin of the surplus production curve (in summary, 𝑟𝑟𝑓𝑓𝑖𝑖𝑓𝑓ℎ) corresponds to r/(n-1). Therefore, to 

obtain the prior distribution of r from 𝑟𝑟𝑓𝑓𝑖𝑖𝑓𝑓ℎ, it is necessary to theoretically use log�𝑟𝑟𝑓𝑓𝑖𝑖𝑓𝑓ℎ�+ log (𝑛𝑛 − 1) as the mean 

value of prior distribution of 𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟). However, the performance when r values obtained this way are actually applied 

to stocks has not been fully investigated, so caution is advised (especially in cases when n is close to 1). Likewise, 
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when n < 1, the slope at the origin theoretically becomes infinite, so it is not possible to directly assume estimated 

values from FishLife. When the likelihood profile plot (Fig. 2) is created using frapmr, the settings cause r to be 

shown as a Pella-Tomlinson model in the upper left horizontal axis, and rold to be shown as a Schaefer model in the 
lower left horizontal axis, creating a relationship in which rold = 𝑟𝑟𝑓𝑓𝑖𝑖𝑓𝑓ℎ. 

While FishBase and FishLife are both specialized for fish data, there is also SeaLifeBase (Palomares and Pauly 

2022) which accumulates information on non-fish marine life. Both FishBase and SeaLifeBase rank species resilience 

(capacity of the population to recover after disturbances) in 4 levels: very low, low, medium, and high. The values 

set by Froese et al. (2017) can be used as references for setting the range of prior distribution of r, with very low = 

0.015 to 0.1, low = 0.05 to 0.5, medium = 0.2 to 0.8, and high = 0.6 to 1.5. 

SPiCT allows users to assume changes in maximum surplus production capacity due to regime shift (Mildenberger 

et al. 2020), and outputs 2 different intrinsic natural growth rates (r1 and r2) for before and after regime shifts. If 

regime shifts like these are assumed, then the change in production Δm will be estimated without changing K due to 

SPiCT’s design, so the prior distribution of r cannot be set. See the Stock Assessment for Hokkaido Sea of Japan 

Stock of Pacific Cod (Sakai et al. 2022a, Sakai et al. 2022b) for a specific example of how this can be applied. 

 

Shape parameters (n) 

The shape parameter determines the shape of the surplus production curve. A larger parameter indicates a greater 

relative position of Bmsy compared to carrying capacity (𝐾𝐾 ), for example, if n≈1 then Bmsy/K = 0.367 (Fox 

production model), if n = 2 then Bmsy/K = 0.5 (Schaefer production model), and if n = 4 then Bmsy/K = 0.630. In 

meta analysis by Thorson et al. (2012), it was demonstrated that the mean Bmsy/K for all fish species was 0.404, 

with some differences in mean within the same taxonomic groups, such as Pleuronectiformes at 0.395, Gadiformes 

at 0.439, Perciformes at 0.353, Clupeiformes at 0.261, and Scorpaeniformes at 0.463. Because the standard deviation 

of these estimated values ranges from 0.1 to 0.13, we believe that the realistic range for general Bmsy/K would be 

from 0.25 to 0.6. 

 

Carrying capacity (K) and fishing gear efficiency (q) 

Carrying capacity and fishing gear efficiency are parameters which determine the scale of absolute size of the 

entire population. Although it is not simple to determine an appropriate range for these parameters, it is possible to 

utilize other information such as estimated stock size from other data sources when available, for example, to 

investigate the possibility of introducing prior distribution to judge whether estimated parameters K and q are 

appropriate. 

One example of utilizing estimated stock size values from other data sources is seen in the 2022 Stock Assessment 

for Northern Hokkaido Stock of Sohachi Flounder (and the 2022 Stock Assessment for Northern Hokkaido Stock of 

Littlemouth Flounder). In these papers, abundance estimated by VPA was used as a stock abundance index, and stock 

size estimates were performed by assuming prior distribution for q = 1 (Chiba et al. 2022a, Chiba et al. 2022b). It 

should be noted that abundance estimated by VPA follow a different definition than stock size estimated by production 

models, so before use, it is necessary to convert values to standing stock values which correspond to the production 

model. Stock size based on VPA represents the population size based on the population growth (maturity and 
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recruitment) in a certain year, before the impact of fishing in that year. Meanwhile, stock size based on production 

models represents the population size in a certain year before the addition of surplus production, and before the 

impact of fishing in that year. In VPA, this is equivalent to the standing stock after decrease due to the impact of 

fishing and natural mortality in the previous year. Accordingly, the equation below will be used as the abundance 

index by extracting the standing stock D from abundance estimates based on VPA. 

𝐷𝐷𝑦𝑦 = (𝐵𝐵𝑦𝑦−1 ∙ 𝑒𝑒
�−𝑀𝑀2 � − 𝐶𝐶𝑦𝑦−1)𝑒𝑒�−

𝑀𝑀
2�   (Equation 2) 

In this equation, By is biomass (in weight) in year y as estimated based on VPA, Cy is the catch in year y, and M is 

natural mortality as assumed in VPA based analysis. It should be noted that even if q is available as reference 

information, it is always required to scrutinize findings when the data set is obtained. 

 If stock size is estimated based on VPA, then it’s possible to theoretically calculate stock biomass 𝐵𝐵0� when F = 

0. Therefore, it should also be possible to use 𝐵𝐵0� as an alternative index for K, but because the process of these 

calculations require assumptions in the stock‑recruitment relationship, it is advised to use the biomass estimate results 

as the prior distribution of q, instead of K, if findings relating to the stock‑recruitment relationship are uncertain.3 

Catch (C) and stock abundance index (I) 

If it is clear that catch is an estimate, then it is advised to gather information relating to the uncertainty of that 

estimate. Likewise, if the uncertainty of estimated stock size is expected due to standardization or other methods, 

then supporting information should be used. However, if the confidence interval as estimated based on 

standardization only evaluates data sampling errors, then the magnitude of observation error in the production model 

(𝜎𝜎𝐼𝐼) might not always be the same value (Francis 2011, Winker et al. 2018). 

 
Other parameters (𝐵𝐵1,𝜎𝜎𝑝𝑝, 𝜎𝜎𝐼𝐼,𝑔𝑔) 

When 𝐵𝐵1  is the stock size at the time the stock assessment is started (the first year for which catch data is 

available), the relative ratio of 𝐵𝐵1 to K ((𝐵𝐵1/𝐾𝐾) can be inferred according to fishing conditions in the year(s) prior 

to the first year for which catch data is available. For example, it can be inferred that 𝐵𝐵1/𝐾𝐾 ≈ 1 in the initial fishing 

season, but 𝐵𝐵1/𝐾𝐾 ≈ 0.5 if fishing has been conducted for many years. Froese et al. (2017) proposed that if catch 

data is available for years before 1960, then 𝐵𝐵1/𝐾𝐾 will range from 0.5 to 0.9, and if data is available after 1960 

then this value will range from 0.2 to 0.6. Even if accurate catch statistics cannot be obtained for fishing conditions 

in the years before stock assessment was first performed, gathering other information about the prior intensity of 

fishing operations can help to presume the realistic range of priors to estimate 𝐵𝐵1/𝐾𝐾 values. 
If process error (𝜎𝜎𝑝𝑝) and observation error ((𝜎𝜎𝑖𝑖,𝑔𝑔) cannot easily be estimated at the same time, you might be able 

to make the assumption that 𝜎𝜎𝑝𝑝 = 𝜎𝜎𝑖𝑖,𝑔𝑔 (Thorson et al. 2013, Pedersen and Berg 2017). 

 

Preparation Step 2: Re-confirming data used in the model(s) 

Simple plots can be used to confirm understanding of the bigger picture of the data and how well the data aligns 

 
3 Up to 2022, the guidelines (draft) recommended the relationship proposed by Froese et al. (2017) as a benchmark 

for the validity of the scope of K. However, this assumed n = 2 in a Schaefer model, and the limits of validity were 
unclear in Pella-Tomlinson models, so this recommendation has been removed from the 2023 edition. 
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with assumptions in the production model. For example, SPiCT includes a function tool named plotspict.ci which 

outputs a plot similar to Fig. 1, which allows users to visualize exactly how much data deviates from assumptions in 

the production model (for example, that higher fishing effort (aka fishing pressure) directly corresponds to a lower 

stock abundance index). However, when this was applied to various species in 2022, plotspict.ci revealed some cases 

when parameters were not easily estimated even if the data indicated that higher fishing pressure directly 

corresponded to a lower stock abundance index. Therefore, it is advised that these plots should only be treated as a 

reference. 

 

Fitting Data to State-Space Production Models 

Developing models in stages 

Ideally, parameters should be estimated based on available data, with as few assumptions as possible. But unless 

excellent data is available, it is generally agreed that it is not possible to estimate all parameters in a production model 

without some bias (Pedersen and Berg 2017). Accordingly, it is important to develop the model in a process which 

starts with zero assumptions for prior distribution of any parameters (model 0), then to add weak assumptions in 

stages, until the model can obtain realistic estimate values. For example, the models below were developed by 

gradually adding assumptions while confirming how each assumption contributes to the stabilization and results of 

the model. For ‘model 0’ and ‘model 1’, the results from settings shown below should be investigated regardless of 

fish species. For ‘model 2+’, the settings should be developed and adjusted according to findings and data for each 

fish species as necessary. Likewise, because it is known that reference points are highly dependent on the parameter 

n, which is difficult to estimate, we recommend to show results for n = 2 and n = 1.19 as ‘sensitivity analysis 1’ and 

‘sensitivity analysis 2’, regardless of the assumption of n in ‘model 2+’. Results for ‘models 2+’ should also be shown 

as ‘sensitivity analysis 3+’ to reflect assumption settings as necessary (include all relevant sensitivity analysis results). 

 

Model 0 Zero assumptions for prior distribution of any parameters. 

Model 1 Assume a weak prior distribution of r and n based on the information from FishLife and 

meta analysis. To find the mean of prior distribution, use convenient projected values from 

FishLife for log(r), and log(2) (Bmsy/K = 0.5) for log(n). Use sd = 1 for the standard 

deviation. 4 

Model 2+ This model should have stronger constraint than model 1. Here’s an example of how to 

develop the model: 

- Take the prior distribution in ‘model 1’ and use sd < 1 for the standard deviation of prior 
distribution (for example, sd = 0.5) in order to increase the relative impact of prior 

information. 

- Assign prior distribution to q if the results of other stock assessments are usable. 

- Fix n at a value that fits the data better (higher likelihood) based on results from the 
likelihood profile (only if n > 1). If the likelihood is maximized when n < 1, then do not 

 
4 https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations 
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fix n, and instead set other parameters such as log(1.19) for the n prior distribution mean, 

and sd = 1. In these cases, the prior distribution mean of log(r) can be log(r) + log(n-1), 

which is adjusted according to n from FishLife. 

- Assume that the process error and observation error are equal. 

- Consider the uncertainty of catch. 
etc. 

Sensitivity 

analysis 1 
- If estimates for r are obtained from FishLife or FishBase, fix n = 2 as a reference case 

(Schaefer production model), and use log(r) and its standard deviation from FishLife 

for prior distribution of log(r). 

Sensitivity 

analysis 2 
- Fix n as estimated based on meta analysis results (Thorson et al. 2012) (for example, n 

= 1.19 for all fish species), and use log(r) + log(n-1) (values from FishLife) and the 

standard deviation of log(r) as the prior distribution of log(r). 

 

To judge whether the results estimated in each model are appropriate, it is advised to investigate the following: (1) 

the numerical stability of estimated results, (2) model diagnostics results, and (3) whether estimates are within the 

appropriate parameter range(s) gathered during preparation. If you encounter problems regarding Step 1 (the stability 

of estimated parameters) as described below, then there is no reason to share model analysis results. At this point, the 

whole model needs to be reconsidered. 

 

(1) The stability of estimated parameters 

- Presence/absence of convergence: Convergence is present, and the parameter estimation errors are obtainable. 
If convergence is absent, then the required number of iterations might exceed the limit. Try raising the iteration 

limit settings. 

- Range of estimated parameters and the confidence interval: Estimated parameters or the confidence interval 
are neither infinite nor diverge at extremely high values. Specifically, it is recommended that the upper 5% 

confidence interval of a parameter is approximately within 10 times the lower 5% confidence interval. 

- Robustness compared to initial values: The same maximum likelihood estimates should be obtained even if 
initial values are adjusted. 

 

(2) Model Diagnostics 

- Likelihood profile [Set certain parameters to fixed values, estimate the remaining parameters, and repeat the 
process with different values of fixed parameters to observe how likelihood changes (Fig. 2)]: Construct a 

likelihood profile for r and n, and check the extent to which r and n values used for prior distribution in ‘model 

1’ are consistent with the data. 

- Retrospective analysis [Delete one year of data, counting back from the most recent year, and repeat estimates]: 
Even if stable parameters are obtained in Step 1, significant problems might be revealed in retrospective analysis, 

so retrospective analysis should always be performed to confirm the presence/absence of retrospective bias (See 

Fig. 3 for an analysis example). SPiCT added the hindcast cross-validation tool in Ver. 1.3.7. Hindcast cross-
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validation is similar to retrospective analysis because it deletes one year of data, counting back from the most 

recent year, then repeats estimates. It also performs future projections for the abundance index and compares 

them to the observed abundance index, which allows for a true evaluation of projection accuracy. 

- Residual analysis [Use residual patterns (observed value - projected value) to judge how well the model explains 
the abundance index which is used as data]: Do the residuals fit the assumption of a normal distribution? Are 

there any significant autocorrelation patterns in the residuals? SPiCT includes a model diagnostics program 

which automatically outputs test results regarding the significance of autocorrelation of residuals and the 

normality of residuals. If you encounter problems with these results, it indicates that there is room for 

improvement in the data or the construction of your model, but problems at this stage are not severe enough to 

reject the whole model. 

- Factor analysis [Observe how, and how much, factors like surplus production, catch, and process errors 
influence fluctuations in population estimates (Fig. 4)]: If surplus production, catch, and process errors are 

estimated on the approximately the same scale, then they are considered to conform with the general assumptions 

in the production model. However, there are some cases when most fluctuations in population dynamics can be 

explained by process error(s), and in cases like these, factor analysis will reveal if information such as surplus 

production cannot be obtained from the available stock data. 

- Sensitivity analysis [Change the value of some parameters (assumptions in the models) to observe how results 
change]: Specifically, ‘sensitivity analysis 1’ and ‘sensitivity analysis 2’ should always be performed. Then, if 

other assumptions are used in ‘model 2+’, the influence of these assumptions on results should be investigated 

using sensitivity analysis to identify how dependent the results are on these assumptions. It is taken for granted 

that adjustments in the model assumptions will produce different results, but it is worth exploring exactly which 

results change easily when the assumption(s) are adjusted, and conversely, it is also worth exploring which results 

remain in common despite adjustments of assumptions within the range of realistically possible values. This will 

allow you to write stock assessment reports which focus on the most robust stock assessment results. (For 

example, if absolute stock size changes dramatically when the assumption(s) are adjusted, then specific figures 

for absolute stock size should not be shared in the report. Meanwhile, if results for when B/Bmsy is higher/lower 

than 1 are robust, then those results should definitely be highlighted in the report.) 

 

Utilization of Stock Assessment Results 

As explained earlier, the construction of production models should start with ‘model 0’, which only uses data. 

Then, the production model can be developed by adding external information such as prior distribution and 

assumptions for parameters. This process helps guide the estimates into a realistic range. The confidence interval of 

estimated parameters will be narrower when the standard deviation of prior distribution is smaller, or when 

assumptions are assigned, so it will probably seem that better estimates are obtained as the model is developed. 

However, if there are errors in the prior distribution, this will lead to errors in judgement of stock status and ABC 

calculations, so caution is always advised. In addition, it is difficult to quantify the certainty of input such as prior 

information, so in some cases, it may be impossible to reduce candidates to a single model. 

Furthermore, the results of a tentative study using management strategy evaluation (MSE) (Stock Assessment 
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Working Group 2022a) showed that if trustworthy prior information is unavailable for parameters (q and K) which 

determine absolute stock size, then a large error will occur in the estimate of absolute stock size. It has been shown 

that this leads to worse performance under Harvest Control Rules (HCR) for Group 1A (in which ABC is calculated 

by multiplying Fmsy by stock size as estimated in the production model), even more so than compared to management 

under HCR for Group 2. Meanwhile, if prior distribution of q and K is assigned without bias and with a certainty of 

approximately sd = 0.5, then the adjusted coefficient β used in HCR for Group 1A will be smaller (for example, 

approximately the standard deviation of estimated stock size), which will lead to equal or better performance than 

HCR for Group 2. 

For these reasons, the utilization of production model results varies greatly according to the certainty of the prior 

information available for the target species, and the robustness of the estimated results. These classifications are 

described in Table 2. Within these classifications, it is acceptable to adopt one or both of 1C21 and 1C22. When 

compared against Group 2 stocks which don’t utilize production model results, or which the results aren’t included 

as an Appendix to stock assessment reports, there are some advantages to policies which publish the results (including 

partial results) of production models in stock assessment reports: 

- Multiple stock abundance indices can be integrated into a single stock abundance index, and if this is used 
for HCR for Group 2 (1C21), then all available data for stock assessment and management can be reflected 

in ABC calculations. This also helps to avoid situations when reference points and ABC are different 

depending on which data is used. 

- When decisive results for stock levels from production models based on population dynamics models are 
included (1C22), then it will also be possible to evaluate the plausibility of decisive results on stock status 

according to Group 2 rules. While it is very important to ensure a smooth start to management of stocks 

with high plausibility, it is also possible to assign a high priority to stocks with low plausibility that are in 

need of active introduction of species-specific MSE. If robust results are obtained for judgement of stock 

status or estimate process error(s), then those results can serve as evidence to support changing biomass 

targets (BT) in Group 2 rules from default values. 

- If reasonably accurate population dynamic estimate results can be obtained, then MSE can be performed 
based on parameters as estimated in the production model(s), which will allow you to make species-specific 

improvements in the adjustment coefficient for Group 2 rules (e.g., Stock Assessment Working Group 

2023b). 

When production model results will also be included as an Appendix, it is important to share as much detailed 

information as possible in documentation, such as the estimates used in calculations, and model analysis results. 

We also included an example of including detailed information in documentation in “Appendix. Example of 

Documentation to Share the Results of Applying a State-Space Surplus Production Model.” 
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Table 1. List of 11 stocks for trial applications of production models in 2022. The items listed here are reference 

materials for internal use during discussions at Research Institute Meetings. Each document is assigned an ID number 

beginning with FRA. Stock assessment reports and Research Institute Meeting materials for each stock in 2022 and 

2023 can be viewed at https://abchan.fra.go.jp/. 

 

Stock name 

Stock 

assessment 

type 

Time 

series 

length of 

catch 

Number of 

series of 

abundance 

index 

Report description 

Western sand lance, 

Eastern Seto Inland Sea 

stock 

Group 2 33 1 

Details are presented in a separate 

document (FRA-SA2022-SC01-204). 

Red-eyed round herring, 

Pacific stock 
Group 2 43 

1 or 2 

(3 scenarios) 

Details are presented in a separate 

document (FRA-SA2022-SC06-12). 

Roughscale flounder, 

Northern Pacific stock Group 2 51 1 

Supplemental verbal explanation(s) at 

Research Institute Meeting(s) 

 

Japanese Spanish 

mackerel, East China Sea 

stock 

Group 2 38 1 or 2 

Details are presented in a separate 

document (FRA-SA2022-BRP09-02). 

Deep-sea smelt, Sea of 

Japan stock 
Group 2 37 1 

Unpublished reference materials 

 

Amberstripe scads, East 

China Sea 
Group 2 29 2 

Details are presented in a separate 

document (FRA-SA2022-SC01-205). 

Japanese scad 

1C22 29 2 

Kobe Plot (Appendix) is included in the 

Stock Assessment Report. Details are 

presented in a separate document 

(FRA-SA2022-SC01-204). 

Pacific cod, Hokkaido 

Pacific stock 1C21 

& 

1C22 

36 1 

Included in the Stock Assessment 

Report along with the Kobe Plot 

(Appendix). Details are presented in a 

separate document (FRA-SA2022-RC-

07-202). 

Pacific cod, Hokkaido Sea 

of Japan stock 

1C21 37 1 

Details are presented in two separate 

documents (FRA-SA2022-RC07-201 

and FRA-SA2022-BRP11-021). 

Summary is in the Appendix section of 

the Stock Assessment Report. 



FRA-SA2023-ABCWG02-07 
 

13 
 

Sohachi Flounder, 

Northern Hokkaido stock 1C1 42 2 

Stock Assessment Report, FRA-

SA2022-SC08-01, and materials from 

Research Institute Meeting 

Littlemouth flounder, 

Northern Hokkaido stock 1C1 42 2 

Stock Assessment Report, FRA-

SA2022-SC08-202, and materials from 

Research Institute Meeting 

 

 

Table 2. Classification for production model results 

Type Conditions Results which should be included Harvest Control Rules 

1C1 If reliable prior information on 

absolute stock size is available 

(stock size estimate results based 

on other data, or stock size 

estimate results based on surveys), 

and there are no noteworthy 

problems with model diagnostics 

results, etc. 

- Model diagnostics results 

- Estimated stock size, Bmsy, Fmsy, 
B/Bmsy, F/Fmsy (main paper), etc. 

- Show estimated values as points and 
also include the confidence interval. 

Catch calculated based 

on estimated stock size 

and Fmsy. 

1C2 If the conditions for 1C1 do not 

apply, but there are some robust 

results, and there are no 

noteworthy problems with model 

diagnostics results, etc. 

Explain which results were robust, 

and which were not, in an Appendix. 

Robust results can also be described in 

the main paper as supplementary 

information. 

Group 2 rules apply due 

to high uncertainty in 

stock size estimates. 

 1C21: If relative trends in stock 

size estimates are robust. 
- Model diagnostics results 

- If stock size estimate results are 
similar from multiple models 

based on realistic assumptions, 

include figure(s) that explain the 

relative trend(s). 

Relative trends in stock 

size can be applied to 

Group 2 rules as a stock 

abundance index. 

 1C22: If there is robust evidence 

regarding the judgement of current 

stock status. 

- Model diagnostics results 

- When using Kobe plots with 
confidence intervals, the plot for 

the most recent year shows the 

confidence interval and/or the 

results of multiple models in the 

same quadrant, or other results 

equivalent to this. 

Group 2 

Group 2 If there are problems with model - Include documentation to Group 2 



FRA-SA2023-ABCWG02-07 
 

14 
 

diagnostics results, or a lack of 

robust results. 

describe the problem(s) 

encountered when applying 

production models, and describe 

the direction of future studies if 

necessary. 
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Fig. 1. Examples of plots generated using plotspict.ci. Left: Ideal example generated from simulation data. Right: 

Example of fitting actual data. If ideal data is available (left), the left figure in middle row will show a relationship 

that trends down and to the right, therefore, MSY and effort proxy (Emsy guess) can be estimated in the center figure 

in the middle row. If the data does not follow such a relationship (right), then estimated Emsy will be negative, which 

indicates the possibility of a problem with the data time series. The original function used for these plots is 

https://github.com/DTUAqua/spict/spict, but the plots shown here were output by a slightly modified program 

(https://github.com/ichimomo/spict/spict). 
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A) 

 
 

B) 

 

 

 

Fig. 3. Example of retrospective analysis. The top section A) shows examples without retrospective bias (Northern 

Hokkaido Stock of Sohachi Flounder). The bottom section B) shows examples with significant retrospective bias in 

three parameters (B, F, F/Fmsy), but without bias in B/Bmsy (bottom left) (Hokkaido Sea of Japan Stock of Pacific 

Cod). 
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Fig. 4. Examples of factor stratification plots for stock fluctuations. On the left, the scale of stock size is so large 
compared to catch and other factors (colored arrows) that realistic estimates cannot be obtained. On the right, 
the scale of catch and other factors (colored arrows) are estimated in a realistic range compared to the scale of 
stock size, so there is a good balance with the process error(s). In these plots, red arrows represent surplus 
production, green arrows represent catch, and blue arrows represent the magnitude of the impact of process 
error(s). 
 

 


