影響が及ぶことも心配されました。 生息分布などが変化して漁船漁業に

仙台湾で繰り返し観測(6月から

に対し開放的な仙台湾は浄化作用が 12月の間に計7回)した結果、外洋

大規模な赤潮は発生せず、

沿岸漁場 ・養殖場環境への影響

餌と海底の状況

した。

大船渡湾

大船渡湾では、

ない 際して漁場の環境変化が問題となら 餌となる植物プランクトンが影響す 過去には、 岸環境の悪化が危惧されます。また、 防波堤なども被害を受けており、 10分の1程度に減少したとも言われ そのため、 類の養殖が盛んでしたが、津波によ の量や海底の状況について調査しま の夏季に餌となる植物プランクトン ンの量や組成が変わった可能性があ た話を耳にしますが、 くなったとか貝毒が発生したといっ ています。 り多くの筏やブイが流されました。 の貝類や、 かを把握するため、 そこで、海面養殖の復興に 津波により植物プランクト 津波後に貝の身入りが良 また、下水処理場や湾口 カキの生産量は震災前の ノリやワカメなどの海藻 カキやホタテなど いずれも貝の 2 沿

> 影響を受けやすい表層付近では、 現存量が震災前の倍程度に増えて かの水深に比べ現存量が高く、 河川など陸域からの 植物プランクト 採水深度 珪藻 ほ たためと考えられます 松島湾で、

ました。また、

■ クリプト藻■ 珪藻 0 2 4 6 8 10 12 14 16 18 20 22

採水日 図1. 大船渡湾の植物プランクトン現存量(クロロフィ

により特定の植物プラ 陸からの栄養供給など 物が減少した一方で、 ンクトンを餌とする生 殖の貝類など植物プラ として、津波により養 した (図1)。この原因 割合が高くなっていま 以外のプランクトンの ンの量が増加

善されたと推測されます

今回の調査では環境悪化は認めら

В A DE 松島湾 津波後 津波前 16.0 14.0 12.0 10.0 8.0 6.0 4.0 有機物含有量(%) 2.0 A B C D E 湾奥 ←→ 湾□ A B C D E 湾奥 **→→** 湾□

図2. 津波前後の海底泥の有機物含有量 (1地点につき2サンプルを分析)

れていませんが、

漁場ごとに状況は

2010年(左図)に比べ、2011年(右図)のクロロフィルa量が高くなっていました

調べました。津波以前は湾全体で有 る海底の泥に含まれる有機物の量を 汚れ具合の指標であ

境変化を見守るためにも、

環境悪化につながります。

今後の環 引き続き

また富栄養化が進行すれば

海底をかき回して汚れを湾外に掃き (図2)。おそらく、津波の引き波が 近い地点ではほぼ半減していました 機物の量はほぼ一様であったのに対 して、津波の後では、湾の入り口に 調査を行っていきます。 仙台湾

南部海域では小型底曳網・刺し網な 北部海域では、ノリやカキの養殖が 仙台湾は、 開放的な海岸が続き、

出したため、海底環境が一時的に改

18 25 1 8 15 22 29 6 13 20 21 3 17

2010年 (全層水を分析)

クロロフィ

貝毒プラン 東北地方沿岸域では、 1961年 クト

要な漁場環境の情報収集にあたりま

水産業の再開のために必

中心とする漁場環境のモニタリング

の水産研究所と協力して、仙台湾を

宮城県水産技術総合センター

-や全国

漁場環境・保全対策チ

ムを結成し、

変化が心配されました。水産総合研 津波によって、仙台湾の漁場環境の 産業の主体となっています。今回の どの小型船舶を用いた漁船漁業が水

究センターでは東北区水産研究所に

がれきの撤去が遅れており、

漁業の

かりました。一部の沿岸の海域では 付近の海域に限られていたことが分

測を継続し、

回復過程を調べていき

の阿武隈川河口から沖合20~40キロ のため貧酸素水塊の発生もごく一部

が、漁場環境としてはかなり回復し 再開が難しい海域も残されています

ていると判断されました。今後も観

存在していた貝毒原因プランクトン を襲ったチリ地震津波で海底泥中に 貝毒発生には、 について調べました。 波と貝毒プランクトン発生との関係 スト分布量と分布傾向を比較し、 れています。そこで、震災前後のシ 大きく影響しているという推測もさ のタネに相当する細胞である「シス ことにより毒化するもので、 つくるある種の藻類を貝類が食べる クトンによる貝類の毒化現象が発生 に突如として麻痺性貝毒原因プラン しています。麻痺性貝毒は、毒物を 一の多くが巻き上げられたことが 6年5月に東北沿岸 6l 年 の

> 結果、湾西部の複数の点と湾 て算出しました(図3)。その 中に含まれるシストの数とし

30

牡鹿半島

赤潮原因プランクトンが海底に沈降

して貧酸素水塊を生じさせ、魚類の

起きる大規模な赤潮、そして引き続

養塩の元となる陸上物質が流入して

心配されたのは、

津波で大量の栄

き発生するノリの色落ち、貝毒など

また、

赤潮が発生すると、

点の表面から約2センチ深までの海 つ 毒原因プランクトンのシスト密度に 底泥を採取しました。この海底泥中 のアレキサンドリウム属の麻痺性貝 いて、 6月に若鷹丸で仙台湾中南部16定 海底泥1立方センチ

は、 海域ではシスト密度が震災前 もきわめて高い値で、 の日本沿岸の記録と比較して チでした。この最高値は過去 め 口付近で比較的高い密度が認 られ、シスト密度の最高値 190シスト/立方セン 部の

宮城県

加は、 まったためと考えられ ストが遅れて沈降し、海底表層に集 再び沈降する際に、 が広い範囲でかき回され、 していることが明らかとなりました。 表層に存在するシストが顕著に増加 から、震災発生後に仙台湾の海底泥 と比べて10倍近く上昇していたこと 今回確認されたシスト密度の増 津波により仙台湾内の海底泥 比重が小さいシ ました。 海底泥が

続き調査を実施していきます 十分注意を払う必要があるため引き において貝毒プランクトンの発生に しばらくは仙台湾周辺海域

仙台湾 シスト/cm 141.7 141.4 141.6 IALO 図3. 各採集地点の海底泥中に含まれる

シスト密度