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Abstract: As an important aquaculture section, molluscan aquaculture has traditionally accounted 
for about 60% of total marine aquaculture production worldwide. The molluscan aquaculture 
species are majorly bivalves, including oysters, clams, scallops, and mussels. Challenges in 
molluscan aquaculture include diseases, environmental stresses, coastal pollutions, and seed 
quality and quantity. This mini review summarized current research updates on immunological 
assays of hemocytes of molluscan bivalves against the biotic (e.g. bacteria, viruses, or protozoan 
parasites) and abiotic stresses (e.g. temperature shock, fluctuated salinity, or environmental toxins). 
As the frontline of immune system, hemocytes play a significant role against these stresses. The 
immunological assays of hemocytes could be used as effective biomarkers to evaluate the effects of 
biotic and abiotic stresses in aquaculture operation and breeding programs.
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Introduction

　Molluscan aquaculture is a US$23.9 billion industry 
worldwide for seafood production (FAO, 2018). 
Sustainability of molluscan aquaculture industry 
faces many challenges including seed quality 
and quantity, environmental stresses and climate 
changes, diseases, natural and genetic resources, 
best practices of operations, and regulatory scrutiny 
(Dumbauld et al., 2009). Accordingly, efforts have 
been made on overcome these challenges through 
genetic breeding for stock enhancement (Hulata, 
2001), disease diagnosis and control by use of 
probiotics (Hoseinifar et al., 2018), natural resources 
conservation management (Beck et al., 2011), 
improvement of water quality through land use 
management, employment of best practices, and 
extensive education programs. 
　Immune system in molluscan bivalves was firstly 
reported in Mytilus californianus about hemolymph 
agglutinins (Tyler, 1946), which were observed later 
in butter clams, Saxidomus giganteus (Johnson, 1964), 
and eastern oysters, Crassostrea virginica (Tripp, 

1966). Hemocytes in bivalves have been studied 
extensively since the 1970s and summarized in two 
review publications (Hine, 1999; Anisimova, 2013). In 
recent years, the molecular mechanisms and signal 
pathways of bivalve immune system have been 
becoming research focus to understand the immune 
protective strategies from various pathogens and 
environmental stresses (Song et al., 2010). 
　This mini review summarized the immunological 
assays of hemocytes from aquaculture molluscan 
bivalves in response to biotic and abiotic factors, and 
it is expected that these hemocyte assays could be 
used as effective biomarkers for disease diagnosis, 
evaluation of environmental stresses, and breeding 
tools. 

Immune System in Molluscan Bivalves

　Immune system in vertebrates includes a series of 
collectively effective defenses against diseases and 
pathogen invasions. The first defense is the physical 
barriers, such as the skin, which can prevent 
from colonization with other organisms and move 
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inhaled materials using the mucociliary apparatus 
(ciliated epithelial cells and mucus-secreting cells). 
The second defense is innate immunity which is 
a primitive nonspecific immunity to against any 
pathogens that enter the body rather than targeted 
specific invaders. The third defense is a complex, 
specific, and long-lasting adaptive immunity which 
relies on the accumulated memory cells after 
exposure to pathogens. 
　Molluscan bivalves possess an open circulatory 
system. Bivalves pump hemolymph into the open 
body cavity (hemocoel), circulates in hemolymph 
vessels and sinuses as well as throughout soft 
tissues, thus the hemolymph can bath the internal 
organs and deliver nutrients and gases. It is believed 
that bivalves use their hemocytes and humoral 
proteins in circulatory system to provide internal 
defensive functions against various pathogen and 
environmental stresses (Bayne, 1983). 

1. Physical barriers
　The external shells in molluscan bivalves are the 
most important physical barrier to protect their 
soft tissues and organs and prevent from predators, 
parasites, harmful substances, and environmental 
changes. For example, the northern quahog (also 
called hard clam), Mercenaria mercenaria, can keep 
their shells closed without any movement and 
ejection for days at -1.0 to 1.9℃ seawater (Loosanoff, 
1939); the Pacific oyster, Crassostrea gigas, can close 
their shells tightly at 4℃ air dry for 47.8 days (50% 
lethal time) (Kawabe et al., 2010); scallops can swim 
away by flapping their shells to escape predators or 
environmental stresses. Additionally, bivalves can 
use their gills and labial palps to select food particles 
and wrap un-selected particles with mucus for 
ejection (Shumway et al., 1985; Ward and Shumway, 
2004).

2. Innate immunity 
　The innate immune in molluscan bivalves 
is believed to achieve through humoral innate 
immunity, which involves in molecules (e.g. proteins) 
in the body humors to stop the growth of pathogens 
or clump them together, and cellular immunity of 
hemocytes, which involves in phagocytes to ingest 
and degrade pathogens (Bayne, 1983). 

　Humoral immunity can be achieved through 
antimicrobial peptides, which is an evolutionarily 
conserved component of innate immunity in all 
classes of life and represent the main form of 
invertebrate systemic immunity. In bivalves, the 
identified humoral factors together with their 
immune functions included atrial natriuretic peptides 
(ANPs) in hemolymph and heart of the eastern 
oyster, Crassostrea virginica (Vesely et al., 1993), 
catecholamines in the giant scallop, Placopecten 
magellanicus (Pani and Croll, 2000), lectins in the 
pearl oyster, Pinctada maxima (Flower et al., 1985), 
and the giant clam, Hippopus hippopus (Puanglarp et 
al., 1995), and hemagglutinins in the eastern oyster 
(Li and Flemming, 1967) and the northern quahog 
(Tripp, 1992). The profile of total protein, ions, 
and sugars composition in hemolymph have been 
documented in Mya arenaria and connected with 
their immune functions (Sunila and Dungan, 1992; 
Rees et al., 1993).
　Hemocyte immunity is the fundamental immune 
feature and usually achieved by recognition of 
foreign substances and subsequent ingestion (Pila 
et al., 2016). The immunological assays of hemocyte 
in molluscan bivalves were stated as follows in next 
Section.  

3.  Adaptive immunity (also cal led acquired 
immunity)

　Adaptive immunity is a more sophisticated system 
to recognize and destroy specific invaders based 
on cellular memory. The process of this defensive 
reaction normally uses specific antigens which are 
activated by exposure to pathogens. Therefore, it 
is antigen-specific functions through cell-mediated 
system. Adaptive immunity system uses an 
immunologic memory to learn about the pathogen 
and enhance the immune response, accordingly. This 
system is more effectively and specifically to the 
pathogens, but usually much slower to respond to 
threats and infections than the innate immunity. 
　Generally, adaptive immunity is considered 
to exist only in vertebrates. However, in recent 
years, adaptive immunity has been identified 
in invertebrates and even bacteria, such as the 
CRISPR/cas9 system which can recognize and 
destroy the invaded virus RNA sequence (Zhang et 
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al., 2012). For bivalves, the first evidence of antiviral 
immune priming was just reported in the Pacific 
oyster (Lafont et al., 2020) against the herpes-like 
virus Ostreid herpesvirus 1, a major viral disease 
triggers the Pacific oyster mortality syndrome 
(Segarra et al., 2010). The injection of various nucleic 
acids showed the capability to trigger oysters to 
protect them against a subsequent viral infection. 
Additionally, specific genes in adaptive immunity 
pathway in abalones were found to be up/down 
regulated when exposure to thermal shock and/or 
hypoxia (He et al., 2017; Zhang et al., 2019) and in 
the Pacific oyster when exposure to environmental 
stresses (Guo et al., 2015). 

Immunological Assays of Hemocytes in  
Molluscan Bivalves

　Hemocytes in bivalves have been reported to 
participate a variety of physiological and immune 
functions, such as wound repair, shell formation and 
healing, nutrient transport and digestion, excretion, 
and internal defense (Anderson and Good, 1976; 
Song et al., 2010; Pila et al., 2016). When exposure to 
invasive pathogens, hemocytes can encapsulate them 
and subsequently destroy them via enzyme activity 
and oxygen metabolite release defense the invading 
microbes (Song et al., 2010). A comprehensive 
review has summarized the morphology and 
functionality of hemocytes in bivalves for further 
reading (Anisimova, 2013).  
　In this publication, a literature search was 
performed about bivalve hemocyte functions under 
different stresses (Table 1). Briefly, the hemocyte 
assays in bivalves are as follows. 

1. Hemocyte morphology and cell types
　Based on the morphological characteristics 
such as cell sizes and cytoplasmic inclusions, the 
hemocytes in bivalves are classified into two types 
- granulocyte and hyalinocyte (agranulocyte). 
For some species, a third type of hemocytes 
with different characteristics was reported with 
different names. So far, two reviews have made 
comprehensive summaries on bivalve hemocyte 
cel ls types for further reading (Hine, 1999; 
Anisimova, 2013). The methodologies for hemocyte 

morphological observation include light microscopy, 
transmission electron microscopy, flow cytometry, 
and monoclonal antibody (Noël et al., 1994). 
(1) Granulocytes
　Granulocytes were found to be the major 
hemocyte type in bivalves. Granulocytes were 
usually characterized with cytoplasmic granules 
and have a low nucleus: cytoplasm ratio. Depending 
on the granular features granulocytes can be sub-
categorized as eosinophilic granulocytes which 
contain cytoplasmic large eosinophilic granules and 
stain with acid stains (such as eosin with pink color), 
basophilic granulocytes which contain small granules 
and stain with alkaline stains (such as methylene 
blue with blue color). In several studies, granulocytes 
were also divided and named as small and large 
granulocytes. The nuclei of granulocytes are usually 
uninucleate or binucleate with eccentric, spherical, 
or occasionally ovoid morphology and stains as dark 
blue with DNA staining by Giemsa.
(2) Agranulocytes (Hyalinocytes)
　Agranulocytes were also named as hyalinocytes in 
many publications based on microscopic observations. 
As the name reflects, these cells are characterized 
with few or without visible cytoplasmic granules in 
cytoplasm and have relative larger nucleus. Based 
on the cell size, agranulocytes can be classified 
into large hyalinocytes (agranulocytes) and small 
hyalinocytes (agranulocytes, also called blast-like 
cells in several publications) with a central ovoid 
or spherical nucleus surrounded by a rim of scant 
cytoplasm lacking organelles (Bachère et al., 1988).  
(3) Other types 
　Besides the granulocyte and agranulocyte 
types, other hemocyte types were observed in 
bivalve species. For example, cells had the general 
appearance of granulocytes, low nucleus: cytoplasmic 
ratio and round nucleus, but had few or no granules. 
These cells were regarded as fibrocytes in the 
eastern oyster and the northern quahog (Foley 
and Cheng, 1972) and later were considered as 
degranulated granulocytes following phagocytosis 
(Mohandas and Cheng, 1985). Depending on cell 
characterizations, different names have been used to 
describe these hemocytes by different authors with 
no systematic rules (Hine, 1999).
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2.  Total hemocyte number and proportions of 
different types 

　The total  hemocyte number and relat ive 
proportions of different types were the most direct 
measurement of hemocyte immune responses. 
Although variations in hemocyte number may exist 
among individuals, any significant changes would 
be more likely linked to the metabolic condition 
changes. Counting of different types of hemocyte 
numbers could be accomplished by microscopic 
observation, but this method is time consuming with 
the process of making slides, staining, and counting. 
Flow cytometer is a fast and accurate method to 
count single-cell suspension such as sperm (Yang 
et al., 2016) and can distinguish different types of 
hemocytes based on side scatter (SSC, measurement 
of cell granularity) and forward scatter (FSC, 
measurement of cell size) (Ashton-Alcox and Ford, 
1998). Therefore, flow cytometry is becoming the 
mostly used approach for measuring the changes of 
hemocyte cell types.

3. Hemocyte viability 
　Hemocyte viability is a measure of the proportion 
of alive cells to evaluate the overall hemocyte health. 
Viability assays can be assessed based on cellular 
metabolism, enzyme activity, or cell membrane 
integrity. The widely used approach was double 
fluorescence staining with membrane permeable 
nuclear dyes, such as SYBR, and the membrane 
impermeable dyes, such as propidium iodide (PI), 
and detected by use of fluorescence microscopy or 
flow cytometry (Allam et al., 2002). Alternatively, 
because cell membrane damage can cause release 
of cytosolic contents into the extracellular space 
including the enzyme lactate dehydrogenase (LDH), 
measurement of the extracellular LDH has also been 
used as an effective assay for hemocyte viability (Chu 
et al., 2002).

4. Hemocyte apoptosis and cell cycle
　Hemocyte apoptosis is a fundamental biological 
process in immune system for defensive functions 
(Sokolova, 2009). Hemocyte proliferation in cell 
number due to cell division in a sample can be used 
as an indicator to evaluate the cell health status. 
Therefore, apoptosis and cell cycle have been used 

as important assays for hemocytes in bivalves, such 
as in the eastern oyster against cadmium exposure 
(Sokolova et al., 2004) and in the flat oyster Ostrea 
edulis against parasite Bonamia ostreae (Gervais et 
al., 2018). Apoptosis and cell cycle assays could be 
performed by flow cytometry or genomic sequences.

5. Phagocytosis 
　Phagocytosis is the most fundamental role for 
hemocytes in bivalves to defense invasive pathogens, 
such as bacteria (Canesi et al., 2002), and involves 
in collaboration of humoral defense factors such as 
agglutinins. Hemocytes can recognize, bind, and 
phagocytize the microbes, and the encapsulated 
microbes would be eventually degraded by cellular 
enzymes and oxidization to decrease the number of 
microbes. 
　Phagocytosis of hemocytes on foreign substances 
was firstly observed in the Pacific oyster (Feng, 
1965), and has been reported to accomplish majorly 
by granulocyte hemocytes (Pipe, 1990), especially 
the eosinophil granulocytes (Hine, 1999; Anisimova, 
2013; Pila et al., 2016). The commonly used method 
to evaluate phagocytosis is to incubate fluorescence 
labelled beads (e.g. The Bangs Laboratories, Inc., 
https://www.bangslabs.com/) or actual microbes at 
certain temperature for a period of time, and the 
quantification of hemocytes with phagocytic beads 
can be performed by use of direct microscopic 
examination, fluorometric evaluation, or flow 
cytometry.
　For bivalves, phagocytosis has been studied in 
many species (Table 1). The phagocytosis process 
involves in humoral defense factors such as 
agglutinins and lysosomal enzymes, and the surface-
bound factors play a significant role in the bacteria-
hemocyte interactions leading to the phagocytosis. 
Phagocytosis in bivalves can be affected by the 
environmental temperatures and other seasonal 
factors ,  but underlying factors inf luencing 
phagocytosis are still not completely understood (see 
a comprehensive review in Canesi et al., 2002). 

6. Reactive oxygen species (ROS) production  
　ROS are natural byproducts of the normal 
me t a b o l i sm  o f  o x y g e n  i n  c e l l  s i g n a l i n g 
and homeostasis. When exposure to environmental 
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stress, ROS production within cells would increase 
dramatical ly because of the damage to cel l 
structures. After phagocytosis, the encapsulated 
microbes could be degraded by the oxidization 
process and cause ROS changes.
　ROS production can be measured by use of a 
nonfluorescent analogue 2’,7’-dichlorofluorescein 
diacetate (DCFH-DA) (Eruslanov and Kusmartsev, 
2010). After diffusing into the cells, DCFH-DA is 
hydrolyzed into 2’,7’-dichlorofluorescein (DCFH) 
which would be trapped within the cells. The 
intracellular DCFH can be oxidized to highly 
fluorescent 2’,7’-dichlorofluorescein (DCF) by ROS, 
and measurement of DCF fluorescence at 530 nm 
can be used to quantify the ROS production by 
use of a flow cytometer (Lambert et al., 2003) or 
proteomic approach (Sheehan and McDonagh, 2008). 
　In molluscan bivalves, the production of ROS has 
been reported in hemocytes of many bivalve species, 
including oysters, mussels, scallops, and clams 
against environmental and biotic stresses (Donaghy 
et al., 2012).  

7. Lysosome enzyme activity
　Lysosomes are membrane-bound vesic les 
containing digestive enzymes, such as glycosidases, 
proteases, and sulfatases, which can digest engulfed 
foreign microbes. In addition, lysosomes can destroy 
targeted organelles through autolysis, and be 
responsible for digesting protein from cell surface 
presented via endocytosis. Therefore, lysosome 
enzyme activity is a parameter to evaluate the 
status of hemocytes after phagocytosis. 
　In molluscan bivalves, the role of lysosomes 
following phagocytosis has been studied widely 
(Cheng, 1983). Lysosome enzyme activities was 
demonstrated in hemocytes of the north quahog 
after exposure and phagocytosis of single-cell algae 
(Moore and Gelder, 1985) and other stresses (Table 
1). The measurement of lysosomal enzyme activities 
was usually performed by incubating with specific 
substrates and quantification of enzymatic products 
through comparing with negative controls without 
substrate (Moore and Gelder, 1985). Alternatively, 
probes linked to the factor controlling lysosomal 
homeostasis was identified and used as an effective 
and efficient tool for measuring lysosomal activity 

in mammalian cells (Ishii et al., 2019), and may be 
applied for bivalve hemocytes.   

8. Molecular pathways for hemocyte immunity
　In recent years, molecular signal pathways for 
hemocyte immunity have been investigated in 
aquaculture bivalves. The molecular mechanisms for 
hemocyte immune recognition, signal transduction, 
and effector synthesis have been reviewed in two 
recent publications together with humoral immunity 
(Song et al., 2010; Zhang et al., 2019).

Application of Hemocyte Immunological Assays  
for Aquaculture

　Environmental stresses, such as temperature, 
salinity, dissolved oxygen, pollutions, and red-
tide algal toxins, are the challenges for molluscan 
aquaculture. To overcome these challenges, 
molluscan bivalves would close their shells as 
immediate responses and use their hemocyte 
immune system to respond (Table 1). However, 
with prolonged exposure to environmental 
stresses, molluscan bivalves could be subsequently 
susceptible to pathogens, increase disease outbreaks, 
and eventually suffer heavy mortality. Therefore, 
immunological responses of hemocytes in molluscan 
bivalves could show different levels and link to their 
considerable resilience to adverse environmental 
conditions. This suggests that, similar to the blood 
tests as diagnostic tool for health evaluation in 
human and livestock, hemocyte immunological assays 
in bivalves could be used as effective parameters to 
evaluate the impact of the environmental stresses, 
serve as measuring tools for genetic breeding, and 
provide diagnosis tools to guidance the operation 
management. 
　With the fast development of DNA sequencing 
technology, genomic tools such as immunological 
related genes, molecular pathways, and specific up- 
or down-regulation genes, have been investigated in 
responses to different environmental stresses. It is 
expected that combination of organism level, cellular, 
and molecular immunological assays could provide a 
full spectrum of immunological assays and serve as 
tools for improvement of molluscan aquaculture.  
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