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Immunological assays of hemocytes in molluscan bivalves as

biomarkers to evaluate stresses for aquaculture

Huiping YANG*

Abstract: As an important aquaculture section, molluscan aquaculture has traditionally accounted

for about 60% of total marine aquaculture production worldwide. The molluscan aquaculture

species are majorly bivalves, including oysters, clams, scallops, and mussels. Challenges in

molluscan aquaculture include diseases, environmental stresses, coastal pollutions, and seed

quality and quantity. This mini review summarized current research updates on immunological

assays of hemocytes of molluscan bivalves against the biotic (e.g. bacteria, viruses, or protozoan

parasites) and abiotic stresses (e.g. temperature shock, fluctuated salinity, or environmental toxins).

As the frontline of immune system, hemocytes play a significant role against these stresses. The

immunological assays of hemocytes could be used as effective biomarkers to evaluate the effects of

biotic and abiotic stresses in aquaculture operation and breeding programs.

Key words: molluscan bivalves, immunological assays, hemocyte, stress, biomarker

Introduction

Molluscan aquaculture is a US$23.9 billion industry
worldwide for seafood production (FAO, 2018).
Sustainability of molluscan aquaculture industry
faces many challenges including seed quality
and quantity, environmental stresses and climate
changes, diseases, natural and genetic resources,
best practices of operations, and regulatory scrutiny
(Dumbauld et al., 2009). Accordingly, efforts have
been made on overcome these challenges through
genetic breeding for stock enhancement (Hulata,
2001), disease diagnosis and control by use of
probiotics (Hoseinifar et al., 2018), natural resources
conservation management (Beck et al., 2011),
improvement of water quality through land use
management, employment of best practices, and
extensive education programs.

Immune system in molluscan bivalves was firstly
reported in Mytilus californianus about hemolymph
agglutinins (Tyler, 1946), which were observed later
in butter clams, Saxidomus giganteus (Johnson, 1964),

and eastern oysters, Crassostrea virginica (Tripp,

1966). Hemocytes in bivalves have been studied
extensively since the 1970s and summarized in two
review publications (Hine, 1999; Anisimova, 2013). In
recent years, the molecular mechanisms and signal
pathways of bivalve immune system have been
becoming research focus to understand the immune
protective strategies from various pathogens and
environmental stresses (Song et al., 2010).

This mini review summarized the immunological
assays of hemocytes from aquaculture molluscan
bivalves in response to biotic and abiotic factors, and
it is expected that these hemocyte assays could be
used as effective biomarkers for disease diagnosis,
evaluation of environmental stresses, and breeding

tools.

Immune System in Molluscan Bivalves

Immune system in vertebrates includes a series of
collectively effective defenses against diseases and
pathogen invasions. The first defense is the physical
barriers, such as the skin, which can prevent

from colonization with other organisms and move
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inhaled materials using the mucociliary apparatus
(ciliated epithelial cells and mucus-secreting cells).
The second defense is innate immunity which is
a primitive nonspecific immunity to against any
pathogens that enter the body rather than targeted
specific invaders. The third defense is a complex,
specific, and long-lasting adaptive immunity which
relies on the accumulated memory cells after
exposure to pathogens.

Molluscan bivalves possess an open circulatory
system. Bivalves pump hemolymph into the open
body cavity (hemocoel), circulates in hemolymph
vessels and sinuses as well as throughout soft
tissues, thus the hemolymph can bath the internal
organs and deliver nutrients and gases. It is believed
that bivalves use their hemocytes and humoral
proteins in circulatory system to provide internal
defensive functions against various pathogen and

environmental stresses (Bayne, 1983).

1. Physical barriers

The external shells in molluscan bivalves are the
most important physical barrier to protect their
soft tissues and organs and prevent from predators,
parasites, harmful substances, and environmental
changes. For example, the northern quahog (also
called hard clam), Mercenaria mercenaria, can keep
their shells closed without any movement and
ejection for days at -1.0 to 1.9C seawater (Loosanoff,
1939); the Pacific oyster, Crassostrea gigas, can close
their shells tightly at 4C air dry for 47.8 days (50%
lethal time) (Kawabe et al, 2010); scallops can swim
away by flapping their shells to escape predators or
environmental stresses. Additionally, bivalves can
use their gills and labial palps to select food particles
and wrap un-selected particles with mucus for
ejection (Shumway et al., 1985; Ward and Shumway,
2004).

2. Innate immunity

The innate immune in molluscan bivalves
is believed to achieve through humoral innate
immunity, which involves in molecules (e.g. proteins)
in the body humors to stop the growth of pathogens
or clump them together, and cellular immunity of
hemocytes, which involves in phagocytes to ingest
and degrade pathogens (Bayne, 1983).

Humoral immunity can be achieved through
antimicrobial peptides, which is an evolutionarily
conserved component of innate immunity in all
classes of life and represent the main form of
invertebrate systemic immunity. In bivalves, the
identified humoral factors together with their
immune functions included atrial natriuretic peptides
(ANPs) in hemolymph and heart of the eastern
oyster, Crassostrea virginica (Vesely et al., 1993),
catecholamines in the giant scallop, Placopecten
magellanicus (Pani and Croll, 2000), lectins in the
pearl oyster, Pinctada maxima (Flower et al., 1985),
and the giant clam, Hippopus hippopus (Puanglarp et
al., 1995), and hemagglutinins in the eastern oyster
(Li and Flemming, 1967) and the northern quahog
(Tripp, 1992). The profile of total protein, ions,
and sugars composition in hemolymph have been
documented in Mya arenaria and connected with
their immune functions (Sunila and Dungan, 1992;
Rees et al., 1993).

Hemocyte immunity is the fundamental immune
feature and usually achieved by recognition of
foreign substances and subsequent ingestion (Pila
et al., 2016). The immunological assays of hemocyte
in molluscan bivalves were stated as follows in next

Section.

3. Adaptive immunity (also called acquired
immunity)

Adaptive immunity is a more sophisticated system
to recognize and destroy specific invaders based
on cellular memory. The process of this defensive
reaction normally uses specific antigens which are
activated by exposure to pathogens. Therefore, it
is antigen-specific functions through cell-mediated
system. Adaptive immunity system uses an
immunologic memory to learn about the pathogen
and enhance the immune response, accordingly. This
system is more effectively and specifically to the
pathogens, but usually much slower to respond to
threats and infections than the innate immunity.

Generally, adaptive immunity is considered
to exist only in vertebrates. However, in recent
years, adaptive immunity has been identified
in invertebrates and even bacteria, such as the
CRISPR/cas9 system which can recognize and
destroy the invaded virus RNA sequence (Zhang et
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al., 2012). For bivalves, the first evidence of antiviral
immune priming was just reported in the Pacific
oyster (Lafont et al., 2020) against the herpes-like
virus Ostreid herpesvirus 1, a major viral disease
triggers the Pacific oyster mortality syndrome
(Segarra et al., 2010). The injection of various nucleic
acids showed the capability to trigger oysters to
protect them against a subsequent viral infection.
Additionally, specific genes in adaptive immunity
pathway in abalones were found to be up/down
regulated when exposure to thermal shock and/or
hypoxia (He et al., 2017; Zhang et al., 2019) and in
the Pacific oyster when exposure to environmental
stresses (Guo et al., 2015).

Immunological Assays of Hemocytes in
Molluscan Bivalves

Hemocytes in bivalves have been reported to
participate a variety of physiological and immune
functions, such as wound repair, shell formation and
healing, nutrient transport and digestion, excretion,
and internal defense (Anderson and Good, 1976;
Song et al., 2010; Pila et al., 2016). When exposure to
invasive pathogens, hemocytes can encapsulate them
and subsequently destroy them via enzyme activity
and oxygen metabolite release defense the invading
microbes (Song et al., 2010). A comprehensive
review has summarized the morphology and
functionality of hemocytes in bivalves for further
reading (Anisimova, 2013).

In this publication, a literature search was
performed about bivalve hemocyte functions under
different stresses (Table 1). Briefly, the hemocyte

assays in bivalves are as follows.

1. Hemocyte morphology and cell types

Based on the morphological characteristics
such as cell sizes and cytoplasmic inclusions, the
hemocytes in bivalves are classified into two types
- granulocyte and hyalinocyte (agranulocyte).
For some species, a third type of hemocytes
with different characteristics was reported with
different names. So far, two reviews have made
comprehensive summaries on bivalve hemocyte
cells types for further reading (Hine, 1999;
Anisimova, 2013). The methodologies for hemocyte
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morphological observation include light microscopy,
transmission electron microscopy, flow cytometry,
and monoclonal antibody (Noél et al., 1994).

(1) Granulocytes

Granulocytes were found to be the major
hemocyte type in bivalves. Granulocytes were
usually characterized with cytoplasmic granules
and have a low nucleus: cytoplasm ratio. Depending
on the granular features granulocytes can be sub-
categorized as eosinophilic granulocytes which
contain cytoplasmic large eosinophilic granules and
stain with acid stains (such as eosin with pink color),
basophilic granulocytes which contain small granules
and stain with alkaline stains (such as methylene
blue with blue color). In several studies, granulocytes
were also divided and named as small and large
granulocytes. The nuclei of granulocytes are usually
uninucleate or binucleate with eccentric, spherical,
or occasionally ovoid morphology and stains as dark
blue with DNA staining by Giemsa.

(2) Agranulocytes (Hyalinocytes)

Agranulocytes were also named as hyalinocytes in
many publications based on microscopic observations.
As the name reflects, these cells are characterized
with few or without visible cytoplasmic granules in
cytoplasm and have relative larger nucleus. Based
on the cell size, agranulocytes can be classified
into large hyalinocytes (agranulocytes) and small
hyalinocytes (agranulocytes, also called blast-like
cells in several publications) with a central ovoid
or spherical nucleus surrounded by a rim of scant
cytoplasm lacking organelles (Bachére et al., 1988).
(3) Other types

Besides the granulocyte and agranulocyte
types, other hemocyte types were observed in
bivalve species. For example, cells had the general
appearance of granulocytes, low nucleus: cytoplasmic
ratio and round nucleus, but had few or no granules.
These cells were regarded as fibrocytes in the
eastern oyster and the northern quahog (Foley
and Cheng, 1972) and later were considered as
degranulated granulocytes following phagocytosis
(Mohandas and Cheng, 1985). Depending on cell
characterizations, different names have been used to
describe these hemocytes by different authors with
no systematic rules (Hine, 1999).
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2. Total hemocyte number and proportions of

different types

The total hemocyte number and relative
proportions of different types were the most direct
measurement of hemocyte immune responses.
Although variations in hemocyte number may exist
among individuals, any significant changes would
be more likely linked to the metabolic condition
changes. Counting of different types of hemocyte
numbers could be accomplished by microscopic
observation, but this method is time consuming with
the process of making slides, staining, and counting.
Flow cytometer is a fast and accurate method to
count single-cell suspension such as sperm (Yang
et al., 2016) and can distinguish different types of
hemocytes based on side scatter (SSC, measurement
of cell granularity) and forward scatter (FSC,
measurement of cell size) (Ashton-Alcox and Ford,
1998). Therefore, flow cytometry is becoming the
mostly used approach for measuring the changes of
hemocyte cell types.

3. Hemocyte viability

Hemocyte viability is a measure of the proportion
of alive cells to evaluate the overall hemocyte health.
Viability assays can be assessed based on cellular
metabolism, enzyme activity, or cell membrane
integrity. The widely used approach was double
fluorescence staining with membrane permeable
nuclear dyes, such as SYBR, and the membrane
impermeable dyes, such as propidium iodide (PI),
and detected by use of fluorescence microscopy or
flow cytometry (Allam et al., 2002). Alternatively,
because cell membrane damage can cause release
of cytosolic contents into the extracellular space
including the enzyme lactate dehydrogenase (LDH),
measurement of the extracellular LDH has also been
used as an effective assay for hemocyte viability (Chu
et al., 2002).

4. Hemocyte apoptosis and cell cycle

Hemocyte apoptosis is a fundamental biological
process in immune system for defensive functions
(Sokolova, 2009). Hemocyte proliferation in cell
number due to cell division in a sample can be used
as an indicator to evaluate the cell health status.

Therefore, apoptosis and cell cycle have been used

as important assays for hemocytes in bivalves, such
as in the eastern oyster against cadmium exposure
(Sokolova et al., 2004) and in the flat oyster Ostrea
edulis against parasite Bonamia ostreae (Gervais et
al., 2018). Apoptosis and cell cycle assays could be
performed by flow cytometry or genomic sequences.

5. Phagocytosis

Phagocytosis is the most fundamental role for
hemocytes in bivalves to defense invasive pathogens,
such as bacteria (Canesi et «al., 2002), and involves
in collaboration of humoral defense factors such as
agglutinins. Hemocytes can recognize, bind, and
phagocytize the microbes, and the encapsulated
microbes would be eventually degraded by cellular
enzymes and oxidization to decrease the number of
microbes.

Phagocytosis of hemocytes on foreign substances
was firstly observed in the Pacific oyster (Feng,
1965), and has been reported to accomplish majorly
by granulocyte hemocytes (Pipe, 1990), especially
the eosinophil granulocytes (Hine, 1999; Anisimova,
2013; Pila et al., 2016). The commonly used method
to evaluate phagocytosis is to incubate fluorescence
labelled beads (e.g. The Bangs Laboratories, Inc.,
https://www.bangslabs.com/) or actual microbes at
certain temperature for a period of time, and the
quantification of hemocytes with phagocytic beads
can be performed by use of direct microscopic
examination, fluorometric evaluation, or flow
cytometry.

For bivalves, phagocytosis has been studied in
many species (Table 1). The phagocytosis process
involves in humoral defense factors such as
agglutinins and lysosomal enzymes, and the surface-
bound factors play a significant role in the bacteria-
hemocyte interactions leading to the phagocytosis.
Phagocytosis in bivalves can be affected by the
environmental temperatures and other seasonal
factors, but underlying factors influencing
phagocytosis are still not completely understood (see

a comprehensive review in Canesi ef al., 2002).

6. Reactive oxygen species (ROS) production
ROS are natural byproducts of the normal
metabolism of oxygen in cell signaling

and homeostasis. When exposure to environmental
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stress, ROS production within cells would increase
dramatically because of the damage to cell
structures. After phagocytosis, the encapsulated
microbes could be degraded by the oxidization
process and cause ROS changes.

ROS production can be measured by use of a
nonfluorescent analogue 2'7-dichlorofluorescein
diacetate (DCFH-DA) (Eruslanov and Kusmartsev,
2010). After diffusing into the cells, DCFH-DA is
hydrolyzed into 2’ 7-dichlorofluorescein (DCFH)
which would be trapped within the cells. The
intracellular DCFH can be oxidized to highly
fluorescent 2'7-dichlorofluorescein (DCF) by ROS,
and measurement of DCF fluorescence at 530 nm
can be used to quantify the ROS production by
use of a flow cytometer (Lambert et al, 2003) or
proteomic approach (Sheehan and McDonagh, 2008).

In molluscan bivalves, the production of ROS has
been reported in hemocytes of many bivalve species,
including oysters, mussels, scallops, and clams
against environmental and biotic stresses (Donaghy
et al., 2012).

7. Lysosome enzyme activity

Lysosomes are membrane-bound vesicles
containing digestive enzymes, such as glycosidases,
proteases, and sulfatases, which can digest engulfed
foreign microbes. In addition, lysosomes can destroy
targeted organelles through autolysis, and be
responsible for digesting protein from cell surface
presented via endocytosis. Therefore, lysosome
enzyme activity is a parameter to evaluate the
status of hemocytes after phagocytosis.

In molluscan bivalves, the role of lysosomes
following phagocytosis has been studied widely
(Cheng, 1983). Lysosome enzyme activities was
demonstrated in hemocytes of the north quahog
after exposure and phagocytosis of single-cell algae
(Moore and Gelder, 1985) and other stresses (Table
1). The measurement of lysosomal enzyme activities
was usually performed by incubating with specific
substrates and quantification of enzymatic products
through comparing with negative controls without
substrate (Moore and Gelder, 1985). Alternatively,
probes linked to the factor controlling lysosomal
homeostasis was identified and used as an effective

and efficient tool for measuring lysosomal activity
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in mammalian cells (Ishii et «l., 2019), and may be
applied for bivalve hemocytes.

8. Molecular pathways for hemocyte immunity

In recent years, molecular signal pathways for
hemocyte immunity have been investigated in
aquaculture bivalves. The molecular mechanisms for
hemocyte immune recognition, signal transduction,
and effector synthesis have been reviewed in two
recent publications together with humoral immunity
(Song et al., 2010; Zhang et al., 2019).

Application of Hemocyte Immunological Assays
for Aquaculture

Environmental stresses, such as temperature,
salinity, dissolved oxygen, pollutions, and red-
tide algal toxins, are the challenges for molluscan
aquaculture. To overcome these challenges,
molluscan bivalves would close their shells as
immediate responses and use their hemocyte
immune system to respond (Table 1). However,
with prolonged exposure to environmental
stresses, molluscan bivalves could be subsequently
susceptible to pathogens, increase disease outbreaks,
and eventually suffer heavy mortality. Therefore,
immunological responses of hemocytes in molluscan
bivalves could show different levels and link to their
considerable resilience to adverse environmental
conditions. This suggests that, similar to the blood
tests as diagnostic tool for health evaluation in
human and livestock, hemocyte immunological assays
in bivalves could be used as effective parameters to
evaluate the impact of the environmental stresses,
serve as measuring tools for genetic breeding, and
provide diagnosis tools to guidance the operation
management.

With the fast development of DNA sequencing
technology, genomic tools such as immunological
related genes, molecular pathways, and specific up-
or down-regulation genes, have been investigated in
responses to different environmental stresses. It is
expected that combination of organism level, cellular,
and molecular immunological assays could provide a
full spectrum of immunological assays and serve as

tools for improvement of molluscan aquaculture.
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