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Harmful algal blooms and shellfish aquaculture in changing 
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Abstract: Shellfish aquaculture is mainly carried out in sheltered coastal areas that are affected by 
several anthropogenic stressors, including eutrophication, pollution, biofouling, invasive species, 
expanding diseases, and harmful algal blooms. In particular, harmful algal blooms (HAB) have been 
known to cause fish and shellfish kills; contamination of fish, but mainly shellfish, with potent toxins 
that cause mild to severe poisonings in humans; and in many cases, alteration of ecosystem functions. 
In shellfish, notably in bivalve molluscs, in addition to mass mortalities, HAB are known to cause 
acute to chronic physiological and pathological alterations that lead to impediments to aquaculture 
farms via reduction of bivalve fitness or following closure of production due to long-term 
contamination with toxins detrimental to human health.
　The frequency, magnitude, duration, and in several cases, the geographic distribution of HAB 
have been increasing, putting shellfish aquaculture farms under further stress. Several factors have 
been attributed to such increase in HAB, including climate change. Range expansions of some 
cosmopolitan HAB species associated with warming ocean temperature have been reported across 
the North Atlantic and North Pacific. In addition, range expansions of some other cosmopolitan HAB 
species have been projected across the North Western European Shelf-Baltic Sea system and North 
East and South East Asia, associated with increased nutrient loads under projected climate change 
scenario A1B of the IPCC, IPSL-CM4. Warming water temperature driven by climate change is also 
expected to induce thermodynamic changes in physiological functions of shellfish, with potential 
shifts in their thermal sensitivity and performance, and it is also expected to alter the responses of 
bivalves to HAB.
　In this mini-review, the effects of HAB and ocean warming – and other climate driven stressors 
like ocean acidification – on these important cultured shellfish species will be discussed in light of 
the findings of relevant studies reported in the literature.
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Introduction

Human consumption from aquaculture exceeded 
that from wild resources for the first time in 2014, 
and aquaculture has become the fastest growing food 
production system in the world (FAO, 2014). Despite 

the expansion of aquaculture activities to offshore 
production, most of the mariculture activities are 
still carried out in sheltered coastal areas (Trujillo 
et al., 2012). These areas are subjected to several 
anthropogenic stressors, including eutrophication, 
pollution, biofouling, invasive species, expanding 
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diseases, and harmful algal blooms (HAB) (Rogers and 
Laffoley, 2011). 

HAB pose a significant threat to marine and 
freshwater ecosystems as they cause a wide range 
of cascading impacts either via their increased 
biomass or via the production of potent toxins and 
bioactive compounds (Burkholder, 1998). These 
HAB have increased over the past decades with 
associated increases in their effects on ecosystems 
and related human activities, including tourism, 
fishing, and aquaculture (Smayda, 1990; Hallegraeff, 
1993; Van Dolah, 2000; Zingone and Enevoldsen, 2000; 
Allen et al., 2006; Matsuyama and Shumway, 2009). 
In addition, a wide diversity of HAB species causes 
intoxication of humans following the consumption 
of seafood products, mainly bivalve molluscs that 
have accumulated their toxins, leading to closures of 
shellfish beds and long-term suspension of production 
in aquaculture farms (Van Dolah, 2000). Several 
species of HAB have also been known to cause 
mass mortalities of aquatic organisms and numerous 
documented deleterious effects on the physiology of 
cultured shellfish (Landsberg, 2002; Basti et al., 2018a). 

Coastal areas witnessing expansion of HAB events 
are also at risk of impacts from climate change-
driven forcing, including sea level rise; alteration in 
nutrients, sediment and salinity regimes; changes 
in circulation patterns, water residence time and 
upwelling; frequency and intensity of storms; ocean 
warming; and ocean acidification (Scavia et al., 
2002; Caldeira and Wickett, 2005; Harley et al., 2006; 
Domingues et al., 2008; Ruckelshaus et al., 2013). The 
impacts of HAB on shellfish aquaculture, mainly 
bivalve molluscs, and the potential impacts of climate-
driven changes on the interactions HAB-shellfish are 
reviewed.

Effects of harmful algal blooms on shellfish

HAB affect shellfish aquaculture by causing acute, 
chronic, and sublethal effects in several species 
of shellfish (Shumway, 1990; Landsberg, 2002). In 
shellfish, in addition to mass mortalities, HAB affect 
the behavior and physiology of several commercially 
important species. Reduction of filtration, respiration, 
and valve gaping have been reported in several 
cultured species, including clams, oysters, mussels, 
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and scallops. Several pathologies in almost all organs 
of bivalve molluscs have also been shown to be 
caused by species of HAB, including inflammation, 
necrosis and atrophy (Shumway and Cucci, 1987; 
Gainey and Shumway, 1988: Bricelj et al., 1996; 
Basti et al., 2009; Basti et al., 2011a; Haberkorn et al., 
2010a; Haberkorn et al., 2010b; Hégaret et al., 2012). 
Several pathologies in almost all organs of bivalve 
molluscs have also been shown to be caused by 
species of HAB, including inflammation, necrosis 
and atrophy. Modulation of the immune system, 
antioxidant system and neuroenzymatic activity, as 
well as modification of the physiological energetics, 
can also occur (Hégaret and Wikfors, 2005; Basti et 
al., 2016). The reproduction and the recruitment of 
shellfish are also affected by several species of HAB, 
with numerous recruitment failures reported from 
the field, in addition to several negative effects in 
gametes, fertilization, embryos and larvae of clams, 
oysters and scallops (Basti et al., 2011b; Basti et al., 
2013; Basti et al., 2015a; Banno et al., 2018). In addition, 
HAB have been shown to affect the susceptibility of 
shellfish to diseases and, thus, facilitate the expansion 
of diseases in aquaculture farms (e.g. Da Silva et al., 
2008; Hégaret et al., 2010; reviewed in: Landsberg, 
2002; Basti et al., 2018a).

Effects of warming and ocean acidification on 
shellfish

The effects of climate change on the world ocean 
are being documented worldwide (IPCC, 2007; Doney 
et al., 2012). Climate-driven changes in the physical 
and chemical systems of the oceans are inducing 
changes in the biological systems as well as human 
uses of ocean resources. Warming water temperature 
has already been shown to affect the survival, 
growth, reproduction, health and phenology of marine 
organisms (Doney et al., 2012). Warming could result 
in changes in the primary production and food web 
structure and function and, thereafter, changes in life 
history processes such as spat-fall of shellfish, as well 
as physiological stresses leading to decreased growth 
and production (Allison et al., 2011). In a literature 
review, Compton et al. (2007) found that warming 
will have more impacts on the survival, range and 
productivity of tropical than temperate shellfish 
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species, which might lead to shift in species cultured 
in aquaculture farms in the future oceans. On the 
other hand, ocean acidification (OA) has been shown 
to affect calcifying organisms, including mussels, 
clams and oysters. Despite the extensive literature on 
the effects of OA on marine organisms, generalization 
on the biological effects of OA remains disputable, 
especially that the mechanisms of sensitivity to 
long-term exposures to OA are not well understood 
(Berge et al., 2006; Gazeau et al., 2007; Cochran et al., 
2009; Miller et al., 2009; Talmage and Gobler, 2010; 
Allisson et al., 2011; Waldbusser et al., 2011; Barton 
et al., 2012). There is little information, however, on 
the effects of both warming and OA on shellfish. For 
instance, in a short- and long-term laboratory studies, 
the fertilization and early-life development of Sydney 
rock oyster were shown to be severely affected by 
the synergistic effects of warming and OA (Parker 
et al., 2009).

Impacts of harmful algal blooms and climate change 
on shellfish aquaculture

Evidence that climate change has been influencing 
HAB events at a global scale has been accumulating 
(Moore et al., 2008). Climate-driven changes in 
temperature, irradiance, chemical composition of 
seawater, nutrients, water stratification, grazing 
pressures, phytoplankton species, and strain 
interactions is expected to affect the prevalence and 
toxicity of HAB (Wells et al., 2015). Changes in HAB 
prevalence and toxicity will affect the responses 
of shellfish to these global stressors as well as 
aquaculture activities. For instance, warming water 
temperature has been shown to affect the metabolism 
of the most widespread HAB toxin (Paralytic Shellfish 
Toxins) in commercial oysters from Australia (Farrell 
et al., 2015). Similarly, increased temperatures and 
OA were shown to increase production of HAB 
toxins and negative effects in shellfish (Tatters et 
al., 2013; Basti et al., 2015b; Basti et al., 2018b). These 
data show that climate-driven warming and OA 
may increase future risks of HAB effects on shellfish 
physiology and aquaculture farms.
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