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Exploring Transcriptomic Patterns in Slow- and Fast-growing Seriola 
dorsalis Larvae
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Abstract: Seriola species have traditionally been a major component of global commercial and 
recreational fisheries, and in recent years, aquaculture value of these fish has grown into a ~$1.3 
billion industry.  The California yellowtail (Seriola dorsalis) is a strong candidate for development of 
offshore commercial aquaculture in southern California and neighboring Baja California.  Although 
production from broodstock populations has been successful, it has not yet reached a sustainable 
level where it can satisfy the aquaculture demand, largely due to difficulties from highly variable 
survival and growth rates through the larval stages.  Given the extremely fast growth and the 
major physical changes that occur during the earliest life stages, one way to examine variability in 
survival and growth is at the gene and molecular levels across those early-developmental periods.  
To improve our understanding of the molecular processes underlying development, we examined 
RNA-Seq profiles for several early life stages of yellowtail, categorized as either slow- or fast-
growing.  Gene expression was measured in three replicates of pooled larval samples at 2, 7, and 17 
days post hatch for these two growth categories.  Using the Illumina platform, an average of sixty 
million reads were obtained per replicate; genes of related function were sorted into clusters, and 
those found at high frequency in the differential gene expression set were identified.  Differences in 
molecular pathways, biological processes, and gene regulating patterns between the two fitness 
groups were examined.  There were many differentially expressed genes across developmental 
stages and between the fitness groups.  For example, genes involved in oxidative phosphorylation 
pathways revealed interesting patterns both across developmental stages and between slow- and 
fast-growing larvae.
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Introduction

In the United States, the native California yellowtail 
(S. dorsalis) is considered a prime candidate for 
aquaculture development in Southern California and 
is the target for an aquaculture industry poised for 
rapid growth in North America, with offshore net 
pens in place off northern Baja California, and 
proposals to develop similar pens off the coast of 

Southern California.  However, the feasibility of 
commercial-scale culture for this and other Seriola 
species hinges on reliable juvenile production from 
broodstock populations.  In Japan, Seriola culture has 
traditionally relied on harvesting and growout of wild 
juveniles, but more recently, focus has shifted to 
closed life-cycle production to help alleviate pressure 
on natural populations and to generate a more 
predictable supply of juveniles (Ohara et al., 2005; 
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Ozaki et al., 2013; Aoki et al., 2014).  Similar to 
aquaculture production of other marine fish, hatchery 
production of Seriola species in the U.S. and 
elsewhere has been hindered by high larval mortality 
(Woolley et al., 2014) and a propensity for growth 
heterogeneity and deformities developed during 
larval and early juvenile stages that limit the 
production capacity and efficiency.  Growth 
heterogeneity may be especially problematic for 
Seriola, as it has been estimated in S. lalandi, for 
example, that small fish constitute up to 42% of an 
offspring population, with many of those individuals 
exhibiting developmental issues leading to their 
demise (Moran, 2007).

Although other aspects of research (e.g., disease, 
nutrition, environmental factors, tank conditions) 
have supported the development of the yellowtail 
aquaculture industry, genetic improvement programs 
for Seriola culture are in the beginning stages (Ozaki 
et al., 2013).  To date, genetic research aimed at 
improving Seriola aquaculture has included: 
construction of linkage maps at varying levels of 
coverage (including a map utilizing a hybrid cross 
between S. quinqueradiata and S. lalandi, Ohara et 
al . ,  2005) ,  development of  genet ic markers 
(microsatellites and single nucleotide polymorphisms 
(SNPs)), identification of markers associated with 
candidate genes of interest, mapping of genes, 
estimation of heritability for commercially-relevant 
traits, and identification of quantitative trait loci 
(QTLs) associated with disease resistance (Ozaki et 
al., 2013; Whatmore et al., 2013; Aoki et al., 2014; Fuji 
et al . ,  2014) .   However ,  up unti l  this point , 
bioinformatics data resulting from next generation 
sequencing has not been applied toward improving 
aquaculture for Seriola.  The development of large-
scale genomic resources has become increasingly 
accessible and affordable for non-model organisms.  
These types of genetic resources have been 
developed and used extensively in agriculture and 
livestock breeding for decades to improve product 
quality and quantity.  Only more recently have these 
genomic approaches been appl ied to select 
aquaculture species (e.g. rainbow trout, Atlantic 
salmon, tilapia, catfish, flounder, Atlantic cod) (Terova 
et al., 2013; Dunham et al., 2014).  Applying these 
genomic approaches to Seriola would greatly aid in 

the selection for economically important traits (Aoki 
et al., 2014) and improve the understanding of the 
biological, biochemical, and molecular networks 
involved in larval development, which could then be 
used to improve culturing techniques (Benzekri et al., 
2014; Mazurais et al., 2011).

In this study, we describe the generation of whole 
larval transcriptomes for the California yellowtail (S. 
dorsalis) at three developmental stages: 2, 7, and 17 
days post hatching (dph) using RNA-Seq on the 
I l lumina HiSeq 2500 sequenc ing p la t form.  
Transcriptional profiles and differential gene 
expression were also investigated for slow- and fast-
growing larvae over these same stages.  We will 
present the f indings of  the transcr iptomic 
investigations.  Through this study, we hope to apply 
the gene expression results to generate a better 
understanding of the mechanisms and timing of 
larval development in S. dorsalis, and of the genes 
and processes involved in the observed growth 
heterogeneity that has limited Seriola aquaculture 
production.

Methods

Larval yellowtail were collected from spawning 
events using the wild-caught broodstock population 
held at Hubbs-SeaWorld Research Institute (HSWRI) 
(San Diego, CA).  Yellowtail larvae were sampled 
opportunistically at 2, 7, and 17 dph with three 
replicates for each time point, and the replicates 
within each time point were sampled from separate 
spawning events.  Depending on developmental 
stage, one to several larvae were placed on a 
microscope slide and euthanized with a lethal dose of 
MS-222.  The larvae were quickly photographed, 
measured, and sorted by size into vials containing 
RNAlater® (Ambion).  The vials of RNAlater® were 
kept on ice until being placed in -20 °C storage at the 
NMFS laboratory. 

As a proxy for physical larval fitness (i.e., overall 
larval growth and robustness), the smallest and 
largest larvae, hereafter referred to as slow-growing 
(SG) and fast-growing (FG) larvae, were sampled 
within each spawning event at the three time points 
used for this experiment, with three replicates at 
each time point.  For each replicate, 10 whole larvae 
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were pooled for the tissue homogenization.  Pooling 
was used to: 1) minimize differences between 
individual larvae and focus on general differences in 
larval age and fitness groups and 2) provide adequate 
amounts of RNA for the analyses, which was 
problematic in single specimens at the earlier time 
points (i.e., 2 dph).  Whole larvae were utilized at the 
three time points to best characterize organism-wide 
developmental changes, particularly as many organ 
systems were not developed at 2 dph. 

RNA-Seq was conducted on the Illumina Hiseq 
2500, and a total of 600 million reads were generated 
for the 18 samples (30 million reads/replicate).  Raw 
read data were assembled using Trinity (Haas et al., 
2013), and DESeq (Anders & Huber, 2010) was used 
to calculate the differential expression (DE) of the 
genes for every combination of timepoint and group 
(SG and FG fish).  For the exploration of gene 
ontology (GO) enrichment, only transcripts with a 
fragments per kilobase of exon per million fragments 
mapped (FPKM) value of greater than four in at least 
one of the 18 samples was retained, resulting in a 
total of 54,858 high confidence transcripts.  GO 
enrichment was performed on each subset of DE 
genes identified by DEseq for each comparison with 
a false discovery rate (FDR) corrected q-value cutoff 
of 0.05.  GO enrichment was also performed on 
additional subsets of transcripts that had opposite 
transcriptional trends spanning the three time points 
between the SG and FG samples.  The transcripts 
were required to have at least 15 normalized read 
counts across all 18 samples, and there had to be at 
least a twofold change between the averaged counts 
of biological replicates for days two and 17, which 
represented the start and end points of the sampling.  
GO terms were further analyzed for broad GO term 
categories using CateGOrizer and MGI_GO_slim2 
categories (Hu et al., 2008), and pathway analysis was 
conducted using PathVisio 3 (Kutmon et al., 2015).

Lemon Tree analysis (Bonnet et al., 2015; Joshi et al., 
2009) was performed to identify gene co-expression 
modules and assign regulators to those modules.  
Counts (FPKM) were normalized for library size, 
using RSEM (Li and Dewey, 2011).  All 18 samples 
were used for clustering.  Transcripts were filtered 
for having at least one sample with FPKM greater 
than four, resulting in 47,609 transcripts. Modules 

with significant interaction terms (FDR = 0.1) were 
selected for further analysis.  Modules were sorted 
by magnitude of difference between groups in mean 
expression change over time.  Modules with large 
expression increases over time in FG fish and large 
decrease over time in SG (and vice versa) were of 
particular interest in order to identify developmental 
gene differences or regulatory differences between 
these two groups.  Module genes were pooled by 
pattern as described above.  GO enrichment analysis 
(FDR = 0.05) was then performed within Cytoscape (v 
3.2.1) (Smoot et al., 2001; Shannon et al., 2003) using the 
BiNGO (Maere et al. 2005) plugin, and zebrafish gene 
ontologies (http://zeogs.molgen.mpg.de/).  Non-
regulatory transcripts with ZFIN (Zebrafish 
Information Network) (Sprague et al., 2005) gene IDs 
were used as the reference gene set for enrichment 
analysis.  

Results and discussion

For slow-growing (SG) fish between 2 and 7 dph 
and between 7 and 17 dph, 343 and 765 significantly 
enriched GO categories were identified, respectively.  
In fast-growing (FG) fish, 604 and 904 GO categories 
were identified as significantly enriched between 2 
and 7 dph and between 7 and 17 dph. For SG and FG 
fish at both time period comparisons (2-7 dph and 7-17 
dph), the GO categories of metabolism and catalytic 
activity contained the largest proportion of enriched 
terms (Fig. 1).

A large proportion of enriched terms fell under the 
transport category for all but the 2-7 dph SG fish, 
where it was significantly lower than other 
comparisons.  Interestingly, the proportion of 
enriched terms in the cellular metabolism category 
was significantly higher in SG fish (both time periods) 
than in FG fish. Within the cellular metabolism 
category, nucleic acid metabolism was higher for 2-7 
dph and 7-17 dph SG fish (5.1% and 4.6%, respectively) 
than for FG fish (1.8% and 1.9%).  However, enriched 
GO terms under primary metabolism were higher 
between 7-17 dph in the FG fish but not in SG fish 
and not different between SG and FG fish in the 2-7 
dph comparisons (Fig.1).

The normalized count data for the three biological 
replicates at each time point were averaged.  These 
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averaged values were then used to generate a 
hierarchical clustering dendrogram using hclust 
(method = ”average”) (Murtagh and Legendre, 2014; 
Murtagh, 1985) to visualize the overall similarity 
between time points of SG and FG fish. Similar to the 
phenotypic characterizations we used to classify the 
SG and FG fish, we note the transcriptional profiles of 
2 dph and 7 dph cluster together, whereas by 17 dph, 
the FG f i sh show a s ign i f icant ly d i f ferent 
transcriptional profile than the SG fish.  In fact, the 

SG fish at 17 dph are transcriptionally more similar to 
7 dph and 2 dph FG and SG fish than to FG fish at 17 
dph (Fig. 2). 

In the module analysis, initial clustering produced 
878 modules, and 63 of these had significant 
interaction terms (FDR = 0.1).  Genes from these 
modules were further grouped into expression 
categories: 1) up-regulation in FG and down-
regulation in SG fish (31 modules) and 2) up-regulation 
in SG and down-regulation in FG fish (12 modules).  
For modules showing preferential increases in FG 
fish, top GO terms (and associated top hierarchical 
enriched GO terms within the GO network) for 
module genes were regulation of metabolic process, 
regulation of biological process, biosynthetic process, 
r ibosome biogenesis ,  nucleobase-nucleoside-
nucleotide and nucleic acid metabolism, response to 
hypoxia, mesenchyme cell migration, cellular 
component assembly, small molecule metabolism and 
generation of precursor metabolites and energy, and 
transport.  The percentage terms under the GO 
categories of translation, generation of precursor 
metabolism and energy, cellular nitrogen-compound 
metabolism, generation precursor metabolites and 
energy, biosynthetic process, and small molecule 
metabolism were significantly higher in FG fish than 
in SG fish (Fig. 3).  

For the 12 modules exhibiting differential increases 

Fig. 1. Proportions of  enriched DE GO terms assigned to GO categories between two time periods, 2 
to 7 days post hatch (dph)  and 7 to 17 dph,  for SG and FG fish.  Significant differences in GO categories 
between growth category or time period are represented by * (p < 0.05) and ** (p < 0.01), and ns (not 
significant) is used to clarify significance relationships when necessary.

Fig. 2. A hierarchical clustering dendogram for all 
gene transcripts to visualize the overall similarity 
between time points of slow-growing (SG) and fast-
growing (FG) fish.

Catherine PURCELL, Andrew SEVERIN, Vince BUONACCORSI,
 Mark DRAWBRIDGE, Kevin STUART, and John HYDE



51

in SG fish, enriched GO terms associated with the 
non-regulatory genes included response to nutrient 
levels (starvation), cellular response to stimulus, 
autophagy and Schwann cell development.  Terms 
under GO categories associated with cell adhesion, 
locomotion, membrane organization, autophagy, cell 
motility, cell morphogenesis, vesicle-mediated 
transport ,  ce l l -prote in modi f icat ion ,  s igna l 
transduction, and cell-cell signaling were significantly 
higher in SG fish module genes (Fig. 3).

Pathway analysis of SG and FG larvae at the time 
points revealed two pathways with obvious trends in 
developmental progression: oxidative phosphorylation  
(Fig.4) and the electron transport chain.  The overall 
trend for these pathways included higher gene 
expression for most genes in these pathways in SG 

fish at 2 dph and a complete reversal by 17 dph, with 
primarily higher gene expression in FG fish.  Pathway 
analysis within growth groups indicate that SG fish 
show decreasing gene expression in these pathways 
as development continues, while FG show increasing 
gene expression over the same 15 day period.

It is not immediately obvious why 2 dph SG larvae 
exhibit up-regulation in oxidative phosphorylation 
and electron-transport chain pathways compared to 
FG larvae at the same time point.  These larvae 
appear to be generating or attempting to generate 
higher levels of energy that do not translate into 
growth.  Quickly the SG larvae lag behind the FG 
larvae, in size and in developmental stages; instead 
they up-regulate processes related to starvation 
responses and autophagy.  One hypothesis is that one 

Fig. 3. From the significant modules, the proportions of terms identified in GO categories for genes in biological 
processes (A) and molecular function (B).  Bar color reflects inclusion in the broader parent GO categories listed 
in the key provided for each graph.  GO categories significantly higher for either the FG or SG larvae are denoted 
by *(P < 0.05) and ** (P < 0.01).
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or more of the ATP-generating pathways contain a 
mutation or some alteration that makes the 
pathway(s) less efficient, and instead of generating 
energy, these processes end up taking a higher 
metabolic toll on the SG larvae (Meyer and Manahan, 
2010; Kocmarek et al., 2014).  Alternatively, it has 
been documented that starvation can result in 
different metabolic adaptations in fish larvae (Salem 
et al., 2007), and it may be possible that the up-
regulated gene expression patterns may result from 
inabilities to translate yolk-reserves into energy in 
the egg or yolk-sac larval stages.  Next steps in this 
research will include exploring significantly 
associated regulatory genes, investigating the stages 
earlier than 2 dph, and examining mitochondrial 
function in the slow-growing larvae.
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Annotated bibliography

(1) Kocmarek A., Ferguson M., and Danzmann R., 
2014: Differential gene expression in small and large 
rainbow trout derived from two seasonal spawning 
groups.  BMC Genomics 15, 57.

In this study, the authors wanted to identify genes 
that showed similar expression patterns between 
large and small rainbow trout from different 
spawning seasons in two types of tissue: liver and 
white muscle.  The goal in identifying these genes 
was to be able to develop growth-related markers for 

use in breeding programs.  They hypothesized that 1) 
genes related to carbohydrate and lipid metabolism, 
energy production, insulin, and growth factors would 
be down-regulated in both tissue types in the small 
fish, 2) that genes involved in cytoskeletal structuring 
would be down-regulated in small fish, while 
myostatin will be up-regulated, and 3) that liver-
specific lipid binding, cytoplasmic components, 
signaling, and transcription would be up-regulated in 
small fish.  They observed that genes related to 
immune function were up regulated in large fish; 
suggesting that enhanced growth is associated with 
enhanced immune function. They also found that 
genes related to transcription, translation, and 
protein production were up regulated in small fish 
(from Sept.) in white muscle, which supports patterns 
previously detected in liver tissue.  This indicates 
that protein production in small fish may not be 
translating effectively into finished proteins.  This 
study was able to identify patterns of differential 
gene expression in small and large rainbow trout; this 
will enable future studies to delve deeper into the 
genes related to differences in growth.

(2) Meyer E. and Manahan D., 2010: Gene expression 
profiling of genetically determined growth variation 
in bivalve larvae (Crassostrea gigas).  J. Exp. Biol. 213,  
749-758.

The authors compared gene expression patterns in 
larvae of the Pacific oyster (Crassostrea gigas) that 
exhibited slow- and fast-growth (these larvae were 
produced from experimental crosses).  Based on a 
previous transcriptome-wide analysis, a set of 181 
candidate genes for growth heterogeneity were 
analyzed with the goal of understanding the biological 
processes underlying the differential growth rates.  
Of the genes identified by GenBank, ribosomal 
proteins were the most abundant, comprising 50% of 
the total genes with 17 different ribosomal protein 
genes.  The genes included nine components of the 
large ribosomal subunit, and eight components of the 
small ribosomal subunit. Some of these genes were 
up-regulated in the fast-growing larvae (n = 6), while 
others were up-regulated in the slow-growing larvae 
(n = 11).  Since ribosome biogenesis is a significant 
metabolic cost in cell proliferation, any changes in 
this pathway would likely have a large effect on the 
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overall energy metabolism.  The authors hypothesize 
that in the slow-growing larvae there may be a high 
metabolic cost to synthesizing and degrading excess 
ribosomal protein copies resulting from the higher 
expression of those genes. 

(3) Moran D., 2007: Size heterogeneity, growth 
potential and aggression in juvenile yellowtail 
kingfish (Seriola lalandi Valenciennes).  Aquac. Res. 
38, 1254-1264.

In this study, the authors are describing the 
occurrence of size heterogeneity and aggressive 
behaviors in cultures of Seriola lalandi; this was done 
to examine the effectiveness of size-grading in 
reducing aggression and mortality, and increasing 
growth rates.  To do this, graded and ungraded 
juveniles were compared for various measures of 
aggression and growth, and a RNA/DNA ratio was 
used as a measure of growth rate.  The authors found 
that size heterogeneity became more pronounced at 
12 days post hatch (dph) when Artemia are offered as 
a food source.  While the large and aggressive 
juveniles only accounted for 8% of the population, the 
small grade juveniles that received the aggression 
accounted for 42% of the population.  In the ungraded 
treatment, this aggression was associated with 
mortality for most small fish.  However, even without 
aggression, the small-grade juveniles did not gain 
weight or increase their RNA/DNA ratio after 12 

days.  The authors believe that these small fish 
appear to be on a degenerative developmental 
strategy without any influence of the larger 
aggressive fish.

(3) Salem M., Silverstein J., Rexroad III C., and Yao J., 
2007: Effect of starvation on global gene expression 
and proteolysis in rainbow trout (Oncorhynchus 
mykiss).  BMC Genomics 8, 328.

The authors of this study used microarrays to 
identify genes and pathways involved in the 
starvation response and protein turnover in rainbow 
trout, and to identify metabolic adaptations that 
occur in the liver during these starvation periods.  
This study was of interest because, as the authors 
point out, examining changes in metabolism during 
starvation is an effective way to identify relationships 
between metabolic pathways and body processes.  
The experiments showed down-regulated expression 
of genes involved in protein biosynthesis in the 
starved fish, but no significant changes in protein 
catabolic pathways, and a slight increase in 20S 
proteasome activity.  Responses in the liver to 
starvation included an overall decline in gene 
expression associated with decreasing tissue 
metabolism, a reduction in protein synthetic capacity, 
an impairment of ATP-biosynthesis, and lower 
expression in hepatic lipid and fatty acid transport.
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