海域における養魚場の海水交流に関する研究─ ▼*

小割の海水交流の一例

久岡 実・野上和彦・竹内 脩・鈴木正也・杉本仁弥

STUDIES ON SEA WATER EXCHANGE IN FISH FARM-II EXCHANGE OF SEA WATER IN FLOATING NET

Minoru Ніsaoka • Kazuhiko Nogami • Osamu Такейсні Masaya Suzuki and Hitomi Sugimoto

The present work deals with the exchange of the sea water of the floating net cultivating yellow tail in the Daio Bay.

The direction of tidal current measured by current drags is shown in Fig. 1. The water in the Daio Bay mainly circulated anti-clockwise when the current of its outside was northeast, while the former moved clockwise when the latter was southwest. But the circulating current was disordered with decrease of the current velocity in the outside. The current velocity in the neighborhood of the floating net was about a half of the outside of the Daio Bay (Figs. 2 and 4).

As shown in Table 6, the current within the floating net showed decrease in velocity by the resistance from the net and was about seventy percent of the current of its neighborhood. The direction of current in the net was as same as that of neighborhood during the period of strong current, but they became to differ each other with decreasing of the current velocity as shown in Table 5. It was considered to be due to the fact that the current was confused by the circular swimming of fish in the net.

The circular swimming of fish was observed to be vigorous during four hours after the sunrise and the most vigorous at the time of feeding. The fish did not indicate any stopping in their movement during the night under lighting. The eddy current developed on the surface of sea water when the fish swam vigorously.

The volume of exchanged water in one tide calculated from the current velocity in the net is given in Table 7, and it is about two hundred times as large as the volume of the net. The variation of the volume of exchanged water and the amount of dissolved oxygen every one hour are shown in Fig. 6.

Consequently, it is considered that the capacity of fish in the floating net must be decided by the smallest volume of exchanged water per hour, because the amount of dissolved oxygen available for fish varies with the volume of exchanged water.

前報(杉本・他,1965)において網仕切り式の養魚場では、潮流および潮位の変動の2つの要因によって養魚場内の交流が行なわれ、潮位の変動が水容積の変動をまねくことを述べた。一方小割式の養魚場では、潮位の変動は小割の上下動を伴うのみであって水容積の増減には全く関係がないのが特徴的で、海水の交流は潮流や風などによる海水の動きによって行なわれる。また昭和39年度魚類養殖環境要因調査の取りまとめ(杉本・他,1965)で述べたように小割式ではかなり密に魚が放養されている。このため一説には魚の遊泳により環流を生じ、この環流による海水の交流もあるといわれている。愛媛県水試の報告(1965)によると、小割内の流速は小割外の流速の光ないしたに低下しているが、1日当り98~115回の交流があるといわれ、ま

^{*} 内海区水産研究所業績第115号。

た長崎県水試の報告 (1965) によると、養魚場内外の溶存酸素量の差から求めた交流量は、1時間当り10~15回であるといわれている。これらの報告に認められるように小割の海水の交流はかなり盛んであることが推測される。

しかしてれらの報告は平均流速で交流量を求めており、上述のように小割ではかなり密に魚が放養されているので、流速の減少した時には海水の交流量も低下し急速な酸素の減少も考えられる。 したがって 外域の流速の違いが小割内の流速にどのような変化をあたえるものなのか、また海水の交流がどのように行なわれ、溶存酸素の補給量がどのように変動するものなのかを知る目的で、一例として広島県似島大黄湾にある小割について調査を行なった。調査にあたって広島県水産試験場の職員のかたがたに御協力をいただいたことを深謝する。

調査の方法

小割のおかれている水域における海水の流動

1965年6月の調査では海流板は1m層に流し、陸上の2点から適時海流板の位置をトランシットを用いて 測定し、湾全体の流向および流速を張潮時と落潮時について求めた。1965年8月には湾外と小割の位置に定 点を設けて24時間連続の流向流速の調査を行ない、流速の地形による変化について検討した。なお海流板は 海洋観測法(1949)に準拠して作製し、水上部30cm、水中部を1mと2mにした。

小割内外の流向流速

小割内の流向流速は小割の中央部に海流板(1m深で測定)を入れ、小割外は潮がみに同様の海流板を入れて1時間おきに24時間の測定を行なった。

小割内の魚群の行動

夜間は20Wの螢光燈を常時点燈した条件下で魚群の行動を1時間おきに上述の調査前に観察した。

小割内の海水の交流量の計算

1時間おきに測定した小割内の流速の平均値を求めて、この値を小割の長さで除して 1 潮時の交流率を求めた。なお溶存酸素量から交流率を求める方法は江草(1963)の方法に準拠した。また 1 時間ごとの海水の交流率もあわせ求めた。

水質の変化

小割内外の0m, 1m層の採水を行ない水質汚濁調査指針(1962)に準拠して溶存酸素量を測定し、水温、塩素量は(東邦電探製 FN 型塩分検出計および二素子自記水温塩分計)を用いて水深1mおきに測定し、また濁度については濁度計(NC型、ライトパス0.5m)を用いて水深1mおきに測定した。

潮位の変化

小割付近の海岸にやぐらを組んで潮位計を設置し自記させた。

調査の結果と考察

大黄湾内外水域の海水の流動および水質の変化

6月23~24日の海流板による調査結果を第1図-1,第1図-2に,8月10~11日の24時間の定点観測の結果を第2図および第3図に示した。

図にみられるように 6月23日 (H. W. 4:00, 16:42; L. W. 10:37, 22:47) と 24日 (H.W. 4:56, 17:56; L. W. 11:37) の転流時は L + 3 時間, H - 2 時間にあると推察され, この転流時は 高低潮時とかなりのずれを示している。また海水の流動は,湾外水域の北東流が強い時期 ($4.6\sim7.3$ cm/sec) には, 大黄湾内では反時計方向の環流 ($2.2\sim3.0$ cm/sec) がみられ,また湾外水域の南西流の強い時期 ($5.5\sim6.8$ cm/sec) には時計方向の環流がみられるが,湾外水域の流速が弱まる時期には湾内のこの傾向はくずれて複雑な流向を示して

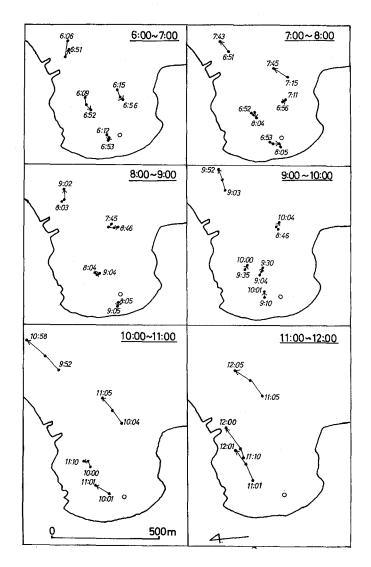


Fig. 1-1. Current in the Daio Bay (June 23, '65).

いる。一方 8月10~11日の24時間観測結果では,流転時はL+1時間に認められるが流向はかなりふれている。24時間の流向流速の変化は第 3 図のように整理され,この日の流向は南西流が多く北東流が少ない。しかし第 2 図に示したように湾外水域の流向は北東流と南西流が主体をなしていることが推測され,この流向の変動に伴って大黄湾の流れは反時計回りと時計回りの環流が交互に生じるものといえる。一方大黄湾外の流速は $0.5\sim26$ cm/sec の間を変化するが,小割のすぐ外の流速は $0.1\sim15$ cm/sec であってその流速は約½となっている。このように湾内の位置によって流速がかなり変化するので,小割設定の場合にはその位置に十分留意する必要がある。

湾内外の水質の日変化について調査した結果を第1,2,3表に示した。表にみられるように、水温、塩

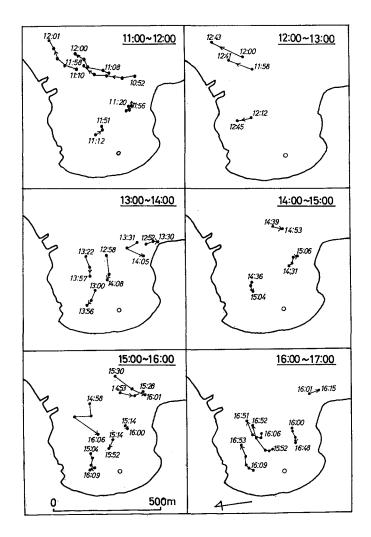


Fig. 1—2. Current in the Daio Bay (June 24, '65).

素量、濁度とも日により変動がはげしく、小割の位置で6月の濁度については中層のにごりが大きく、8月には中層がきれいで上下層がにごっている。また6月の塩素量は1m層までが7%という低かん水となっている。すなわち、大黄湾は広島湾の湾奥部に位置しているため、陸水の消長(6月にはかなりの降雨があった)によって表層の水質はかなり影響を受けるものと推定される。したがって小割内の水質も大雨のあとには相当変化する不安定な水域であるといえる。

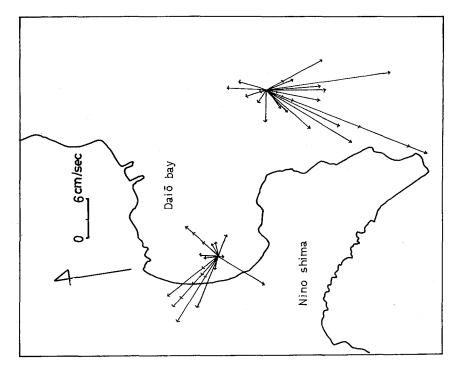


Fig. 3. Direction and velocity of current at observational stations (Aug. 10, '65).

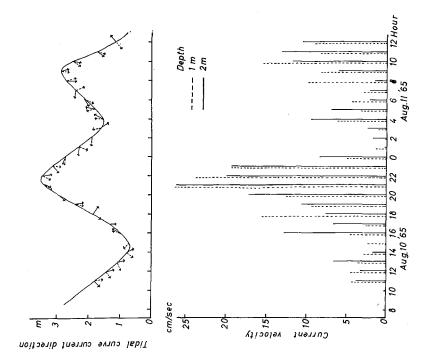


Fig. 2. Variation of direction and velocity of current at observational station in the outside of the Daio Bay.

Table 1. Water qualities in the fish farm.

~	Depth	C	Outside of fis	sh farm]	Inside of fis	h farm	
Date	m	W. T. ∘ _C	Cl ‰	τ	$O_{2 \text{ m}l/l}$	W. T. °C	Cl ‰	τ	O _{2 ml/l}
June 23, '65	0	21. 9	6. 80	·		22. 7	7. 33		
June 23, 63	1	21.6	11.60	5. 22	8. 47	21.6	10. 62		8. 13
1 5 hr	2	19.8	15. 50	2. 74		20. 2	15. 25		
1 3 111	3	19.0	16. 78	1.11		18.9	16. 79		
	4	18. 6	17. 22	1.09		18. 7	17. 10		
	5	18.0	17. 82	0.89			-		
	0	22. 8	8. 00	7. 24	8. 32	22. 6	7. 65	8. 18	
	1	21.7	10. 78	6. 79	0.32	21.9	9. 84	6. 79	8. 26
1 6 hr	2	20. 5	14. 80	3.84		20. 3	14. 60	4.03	
1 0 111	3	19. 3	16. 48	1.58		19. 1	16. 50	1.80	
	4	18.8	17. 10	0.98		18. 9	17.06	1. 18	
	5	18. 4	17. 22	0.75					
	0	22. 9	9. 42	4. 47		22. 5	9. 45	4. 24	
	1	21.5	11.14	5.62	9. 44	21. 3	11. 43	5.41	9. 19
1 7 hr	2	20. 4	14. 50	4.03		20. 4	13. 76	4.03	
1 / 111	3	19.0	16. 96	1.77		19.5	16. 76	2.50	
	4	18. 6	17. 44	1.02		18.8	17. 23	1.77	
	5	18. 1	17. 90	0.85					
	0	21.8	10. 59	2. 85		21.8	10. 42	2. 85	
	I	21. 2	11.60	3. 15	9. 07	21. 2	12.60	3. 28	9. 27
1 8 hr	2	20. 5	13. 12	4.03		20. 5	13.08	4. 03	
1 0 111	3	19. 4	16. 47	3. 22		20.0	15. 51	3. 35	
	4	18. 8	17. 10	1.52		19.0	16. 64	2. 36	
	5	18. 1	17. 80	0. 91					
	0	22. 0	9. 77	2. 97	1	22. 0	9. 49	2. 97	
	1	21.6	10. 42	3.09	9. 84	21.7	10. 48	3.09	10. 75
1 9 hr	2	21. 2	13. 08	3. 75		21. 2	12. 62	4.03	
1 3 111	3	20. 2	14. 90	3.84		20. 1	14. 76	//	
	4	19. 4	15. 93	3. 15		20.0	14. 80	3. 28	
	5	18.8	16. 94	1.64					
	0	22. 2	9. 14	2. 94		22. 2	8. 98	2. 64	
	1	22. 1	9.30	3.09	9. 27	"	9. 13	2.85	9. 41
2 0 hr	2 .	21.5	10. 32	3. 22		21.6	10. 38	2.97	
2 0 m	3	20. 2	14. 72	2.91		20. 3	14. 45	3. 28	
	4	19. 4	16. 17	2. 36					
	5	18. 4	17. 48	0.93					
	0	23. 0	6. 72	2. 64		23. 0	6. 64	2. 64	
	1	22. 8	7. 92	//	8. 18	22.8	7. 46	2. 70	8. 12
2 I hr	2	22. 0	9. 65	//		21.8	9. 93	"	1
∠ 1 III	3	20. 3	15. 32	2.80		20. 4	15.06	2.64	
	4	19. 0	16. 91	1. 70					
	5	18. 2	17.62	1.13					

Dete	Depth		Outside of f	ish farm			Inside of fish	ı farm	
Date	m	W. T. °C	Cl ‰	au	$O_{2 \text{ m}l/l}$	W. T. °C	Cl ‰	au	O _{2 ml/l}
	0	23. 1	6. 59	2. 64		23. 0	6. 57	2. 64	
	1	23.0	6. 87	2.74	7. 89	22. 8	6. 96	2. 97	8. 68
2 2 hr	2	22. 6	8. 17	2.80		22.6	8. 49	3.09	
2 2 M	3	18.6	17. 48	1.64		19. 1	16. 87	1.33	
	4	18. 1	17. 70	1.11		18. 2	17. 48	1. 13	
	5	17. 9	17. 85	1.58					
	0	22. 7	6. 61	2. 80		22. 6	6. 59	2. 70	
	1	22. 8	6. 67	"	8. 25	22. 8	6. 67	2.80	8. 84
2 3 hr	2	22.6	8. 97	3. 35		22. 4	10.03	3. 35	
	3	18. 9	17. 00	1.31		19. 3	16. 84	1.31	
	4	18. 2	17. 48	1. 33					
	5	17.9	17. 76	2. 80					
June 24, '65	0	22. 7	6. 43	2. 54		22. 6	6. 44	2. 12	
Jane 21, 03	1	"	7. 07	3.02	8. 12	"	7. 08	2. 70	8. 29
0 hr	2	22. 0	9. 33	3. 22		21.8	9. 83	3. 22	
0 111	3	19. 3	16. 80	1.47		19. 5	16. 35	2. 28	
	4	18. 1	17. 52	1. 23		18. 5	17. 34	0.89	
	5	17.8	17. 80	1. 16					
	0	22. 5	6. 60	2. 12		22. 5	6. 49	2. 19	
	1	22. 7	7. 52	2.64	7. 71	22. 7	6. 88	2.64	7. 53
1 hr	2	22. 0	11. 23	3. 35		21.2	12. 54	3.66	
1 ***	3	19.8	16. 11	1.55		19. 5	16. 21	1.64	
	4	18. 3	17. 66	1. 33					
	5	17. 2	18. 04	0. 79				w ·	
	0	22. 7	6. 68	1.73		22. 7	6. 32	1.64	
	1	22. 8	6. 83	2. 19	7. 96	22. 8	6. 89	2. 16	8. 94
2 hr	2	21.9	11. 26	3. 22		21.9	10. 77	3. 43	
	3	19.8	15. 77	1.83		19.8	15. 86	1.31	
	4	18. 3	17. 10	1.64				1.44	
	5	17.0	18. 00	0. 23					
	0	22. 1	6. 54	2.00		22. 0	6. 37	1.97	
	1	22. 7	6. 94	2. 36	7. 64	22. 6	7. 04	2. 32	6. 99
3 hr	2	21.9	11. 42	3. 58		21. 2	13. 64	3. 58	
· ·	3	19.8	15. 68	2. 19		19.8	15. 72	2.04	
	4	18.8	17. 12	1.31				1.47	
	5	16. 9	18. 14	0. 66					
	0	22. 0	6. 56	2. 00		22. 0	6. 37	2.04	
	1	22. 6	6. 73	2.41	8. 17	22. 6	6. 77	2. 36	8. 40
4 hr	2	22. 2	12. 57	4. 74		22. 1	10. 80	4. 74	
•	3	19. 2	16. 56	1.77		19. 6	16. 17	1.90	
	4	18. 2	17.48	1.00				1.04	
	5	17. 1	18.00	0.85					

D-4-	Depth		Outside of fi	ish farm			Inside of fish	ı farm	
Date	m	W. T. °C	Cl ‰	au	$O_{2 \text{ m}l/l}$	W. T. °C	CI ‰	au	O _{2 ml/}
	0	21.9	6. 61	1. 83		21. 9	6. 43	2. 19	
	1	22. 7	7. 40	2. 28	8. 46	22. 6	7. 23	4.03	6. 94
5 hr	2	22.0	9.49	3. 50		21.4	12. 03	2. 19	
J 111	3	19. 9	15. 98	2.07		18. 5	17. 23	1.70	
	4	18. 4	17. 15	1.47					
	5	17. 9	17. 61	1. 21	-				
	0	22. 5	7. 05	2. 16		22. 3	7. 16	2. 36	
	1	22. 2	9. 46	3.09	5.86	22. 2	9. 12	3. 43	5. 62
6 hr	2	20. 2	14. 73	3. 22		20. 3	14.60	3.35	
0	3	19.6	16. 12	1.77		19. 5	16. 07	1.90	
	4	18. 7	16. 93	1.64		18. 7	16. 85	1.80	
	5	17. 9	17. 52	1.49					
	0	22. 3	6. 81	2. 00		22. 2	6. 74	1. 90	
	1	22. 4	8. 26	2.64	5. 64	22. 4	7. 84	2.64	5. 20
7 hr	2	21. 2	13. 74	2.70		21.9	13.08	4. 35	
7 111	3	19.6	15. 49	1.64		19. 6	15. 49	2.74	
	4	18. 7	16. 90	1. 07		19.0	16. 87	1.58	
	5	18. 1	17. 57	1. 52					
-	0	22. 4	7. 07	1. 77		22. 3	7. 08	1. 70	
	1	22. 5	9.00	2. 74	5. 47	22. 5	7. 85	2.45	5. 47
8 hr	2	22. 2	12. 66	2. 45		21.5	13. 75	2.04	
0 111	3	19. 7	16. 42	1.11		19.8	16. 28	1.31	
	4	18. 4	17. 72	0. 93		18. 6	17. 48	1.47	
	5	18. 0	17. 99	0.89			-		
	0	22. 7	7. 07	1. 64	7.04	22. 7	6. 80	1. 73	
	1	22. 6	7. 34	3.50	7.01	22.6	7. 27	3. 35	6. 79
9 hr	2	20. 2	14. 92	1.58		20.0	15. 29	1.67	i
J 111	3	18.8	17. 00	1.00		18.8	17. 04	1.04	
	4	18. 2	17. 82	0.79		18. 3	17. 62	0.89	
	5	18.0	18. 00	0.64				_	
	0	23. 1	6. 74	1. 97		23. 2	6. 55	2. 12	
	1	22. 8	7. 04	2.00	6. 55	22.8	7. 01	2. 16	4. 62
1 0 hr	2	19.9	16. 26	1.83		19.6	16.00	1.77	
.10111	3	18.8	16. 90	0.93		18.8	16. 94	0.98	
	4	18. 3	17. 56	0.87		18. 5	17. 34	1.02	
	5	18. 0	17. 80	0.73					
	0	23. 5	6. 83	2. 07		23. 2	6. 66	2. 12	
	1	22. 9	8.06	3. 66	5. 05	23.0	7. 94	2.97	4. 99
1 1 hr	2	19.8	16. 28	1. 52		20. 3	16. 20	3.09	
1 1 111	3	18.9	16. 96	0. 91	<u> </u> -	18.8	16. 94	1.02	
	4	18. 3	17. 61	0.81		18. 6	17. 50	0. 95	
	5	18. 0	17. 90	0. 66					

	Depth		Outside of fi	sh farm			Inside of fis	h farm	
Date	m	W. T. °C	Cl %	τ	O ₂ ml/l	W. T. °C	Cl ‰	τ	$O_{2ml/l}$
	0	23. 4	7. 07	2.04		23. 6	6. 89	2. 19	
	1	22. 3	11. 48	4.03	5. 52	22. 3	11.88	3.66	4. 89
1 2 hr	2	20. 5	15. 41	2.74		20. 3	15. 39	2.74	
1 2, 111	3	19. 3	16. 52	1.52		19. 2	16. 52	1. 38	
	4	18. 1	17. 76	1.02		18. 9	17. 32	1.11	
	5	17.8	17.94	0. 67			,		
	0	24. 3	7. 00	2. 12		24. 2	6. 87	7. 24	
	1	22.8	10. 02	3.84	5. 65	22. 6	10. 15	4. 47	6.90
1 3 hr	2	20. 7	15. 28	2.80		20.8	15. 12	2.97	
1 3 111	3	19. 1	16. 87	1.04		19. 2	16. 62	1.13	
	4	18. 0	17.80	1.00		18. 8	17. 45	1.09	
	5	17. 6	18. 21	0.66					

Table 2. Water qualities at the observational station in the fish farm.

Date	Depth m	W. T. °C	Cl %	τ	$O_2 \atop ml/l_i$	Date	Depth m	W. T.	Cl ‰	τ	${ m O_2} \atop { m m} l/l$
	0	25. 4	12.00	2. 97	5. 47		5	21.6	17. 02	3.09	
Aug. 10,'65	1	"	13. 91	2. 36			6	21.4	"	1.00	
	2	24. 2	15. 38	1. 52			7	21. 1	17. 13	2.64	
	3	23.0	16. 23	1. 26			8			3. 66	
1 1 hr	4	22. 4	16. 46	1.64			9			Ì	
1 1 111	5	22. 2	16. 58	1.41			0	26. 8	13. 00	2. 54	6. 15
	6	22. 0	16. 66	"			1	26. 3	13. 91	2. 50	0. 13
	7	21.9	16. 67	1. 21			$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	25. 9	14. 67	1.80	6. 07
	8	21.5	16.81	1.33	ľ		3	22. 8	16. 77	2. 45	0.07
	9			2. 36			4	21.6	17. 10	1. 70	
	0	25. 9	12. 83	2. 19	6. 11	14 hr	5	21. 0	17. 10	1. 49	
				2. 19	0. 11		6	"	17. 14	1. 43	
	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	25. 8 25. 5	13. 30 14. 34	1. 83	5. 20		7	21.0	17. 14	3. 35	
	3	24. 7	15. 68	1. 31	3. 20		8	21.0	17.14	3. 33	
	4	22. 1	16.62	2. 28	ĺ		9		ĺ		
12 hr	5	22. 1		0, 81			9				
			16. 54	1. 83			0	26.6	13. 98	2.80	5. 99
	6	21. 7	16. 68	1. 63	ĺ		1	25. 8	14. 04	2. 28	
	7	<i>"</i>	"	1			2	25. 3	14. 57	2. 12	5. 57
	8	21.5	16. 81	1.02			3	23. 9	15. 72	1.64	
	9					15 hr	4	22. 2	16. 39	1. 47	
	0	26. 9	12.60	2. 28	6. 16	13 111	5	21. 7	16. 46	2. 59	
	1	26. 2	13. 18	"			6	21.6	16. 42	2. 45	
13 hr	2	25. 8	14. 02	1.97	6. 42		7			2. 07	
	3	22. 6	16. 42	"			8				
ļ	4	21.8	16. 99	1.83	j		9	j		ļ	

Date	Depth m	W. T. .C	Cl %	au	$O_2 \atop ml/l$	Date	Depth m	W. T. °C	Cl %	τ	$O_2 \atop ml/l$
	0	25. 8	13. 82	2. 32	5. 95		0	25. 7	13. 56	1.61	6.05
	1	25. 2	14. 22	1.73			1	.11	13.60	1.67	
	2	25.0	14.81	2. 24	5. 96		2	25. 5	13.90	1.61	5. 95
	3	23. 1	16. 32	1. 26			3	24. 3	14. 76	1.49	
16 hr	4	22. 3	16. 66	1.64		20 hr	4	23. 5	15.73	1.26	
10 112	5	21.7	16. 90	//		20 21	5	22. 0	16.46	1. 36	
	6	21.3	16. 98	1. 70			6	21.6	16, 61	1.61	
	7	21. 1	16. 99	1. 47			7	21.3	16. 74	1. 52	
	8			2.85			8	21. 1	16, 78	1.49	
	9						9	21.0	16, 82	1. 55	
	0	25. 8	14. 04	2.00	5. 83		0	26. 1	12. 66	2. 74	6. 29
	1	25. 7	"	"			1	26. 0	12, 69	2. 91	
	2	24. 8	14. 76	1.61	6. 14		2	25. 4	13, 98	2. 36	6.02
	3	23. 0	16. 12	1.64			3	24. 6	14. 94	1. 77	
17 hr	4	21.7	16. 84	1.80		21 hr	4	23. 0	16.04	1. 47	
17	5	21.3	17. 00	1. 70		<u> </u>	5	21.8	16. 68	1. 97	
	6	21. 1	17.04	1.09			6	21.4	16, 76	2. 12	
	7	21.0	17.08	1. 28			7	21. 2	16. 78	1. 70	
	8						8	21. 1	16. 79	1.64	
	9						9	21.0	16.81	1. 47	
	0	25. 8	13. 92	1. 83	6. 06		0	25. 7	12. 29	2. 36	6. 27
	1	25. 6	13. 99	"			1	25. 9	13, 14	2.04	
	2	24. 1	15. 40	1.44	5. 90		2	23. 9	15. 56	1.61	5.88
	3	23, 1	16.08	1.11			3	23. 3	15. 98	1. 07	
18 hr	4	22. 6	16. 36	1.00		22 hr	4	23. 0	16.09	0. 87	
10	5	21.4	16. 84	1.70	İ		5	"	16.11	0. 93	
	6	21,0	16. 99	1. 33			6	22. 5	16. 29	0. 98	
	7	20, 7	17. 08	2. 19			7	21. 5	16. 67	1.77	
	8	20, 3	17. 23	3. 75			8	"	"	1. 52	
	9			3, 15	_		9	21.0	16. 75	1. 47	
	0	25. 6	13. 90	1. 44	6. 00		0	25. 8	12. 27	2. 28	6.00
	1	25. 5	14. 09	1. 49			1	26. 0	12. 87	2. 19	
	2	24. 7	14. 96	1. 21	6.01		2	25. 9	13. 35	2.04	6.03
	3	24. 2	15. 36	0. 91	,		3	23.8	15. 80	1. 21	
19 hr	4	23. 8	15. 60	0. 98	ĺ	23 hr	4	23. 2	16. 14	0. 69	
	5	23. 2	16. 03	0. 75		20	5	23.0	16. 18	"	
	6	22. 5	16. 33	1.09	Ì		6	22. 7	16. 30	0. 81	
	7	21.7	16. 66	1. 67			7	22. 4	16. 40	1.02	
	8	21. 2	16. 83	1. 09	Į.		8	22. 1	16. 50	0. 98	
	9	20. 9	16. 95	1. 13			9	İ		0.89	

· · · · · · · · · · · · · · · · · · ·											
Date	Depth m	W. T. °C	Cl %	au	${ m O_2 \atop ml/l}$	Date	Dapth m	W. T	C1 %	τ	${ m O_2 \atop ml/c}$
	0	25. 5	12. 49	1.86	5. 94		0	25. 4	12. 90	1. 07	6.09
Aug. 11,'65	1	25. 6	12.66	"	6. 15		1	25. 5	13. 65	1. 23	
	2	"	13. 35	1.83			2	24.0	14. 69	0. 55	5. 17
	3	25. 4	14. 18	1.64	;		3	23. 5	15. 62	0.41	
0 hr	4	23. 6	15. 58	0. 93		4 hr	4	22. 9	15. 96	0. 32	
0 111	5	23. 0	16. 10	0. 85		1 111	5	22. 5	26. 12	0.30	
	6	22. 4	16. 33	0. 98			6	21.6	16. 46	0. 36	
	7	22. 2	16. 35	1. 07			7	20. 8	16. 78	1. 13	
	8	21.8	16. 51	1. 52			8	"	"	0. 93	
	9	21.7	16. 48	1.83			9				
	0	25. 4	12. 45	2. 07	5. 95		0	25. 2	12. 56	1.77	5. 41
	1	25. 8	13. 12	1. 97			1	25. 8	13. 32	1.90	
	2	25. 3	13. 90	1.67	5. 48		2	25. 3	13. 94	"	5. 49
	3	23. 9	15. 40	1. 21			3	23. 5	15. 66	1. 21	
1 hr	4	22. 7	16. 20	0.89		5 hr	4	22. 6	16. 28	1. 16	
1 111	5	22. 1	16. 38	1.09		J	5	22. 3	16. 40	1. 26	
	6	21.9	16. 42	1.67			6	21.0	16. 90	1. 52	
	7	21. 5	16. 55	1. 18			7	20. 6	17. 07	1.77	
	8	21.4	16. 59	1. 52			8	"	"	1.47	
	9			1. 97			9			1.41	
	0	25. 3	12. 01	1. 70	6. 10		0	25. 6	13. 14	1. 70	5, 52
	1	25. 8	13. 08	1. 90			1	"	13. 18	"	
	2	24. 8	14. 52	1, 52	5. 80		2	24. 4	15. 18	1. 67	5. 94
	3	22. 6	16. 24	0. 87			3	22.6	16. 20	1. 11	
0 1	4	21.9	16. 49	1.09		6 hr	4	21.8	16. 58	1. 33	
2 hr	5	21.3	16. 69	1.80		0,111	5	21. 5	16. 63	1. 28	
	6	21. 1	16. 77	1.31			6	21.0	16. 72	1. 26	
	7	21.0	16. 82	1. 26			7	20. 7	16. 94	1. 28	
	8	20. 9	"	1. 36			8	20. 5	17. 02	1.64	
	9			2. 28			9			1. 52	
	0	25. 2	11. 98	1. 55	5. 68		0	25. 5	12. 83	1. 55	5. 63
	1	25. 8	12.84	1.80			1	25. 6	13. 02	1. 73	
	2	25. 6	13. 59	1. 67	6.01		2	"	13. 35	."	5. 80
	3	23.8		1.31			3	23.6	15.66	1. 70	
2 h	4	22. 3	16. 42	0. 79		7 hr	4	21. 7	16. 75	1.41	
3 hr	5	21. 1	16. 92	1.09		''''	5	21. 2	16. 91	1.64	
	6	20. 9	17. 01	1. 47			6	20. 9	17. 04	1. 21	
	7	20. 8	//	1.31			7	20.8	"	1. 16	
	8	"	//	2. 00			8	20. 7	"	"	
	9						9	20.6	17. 08	1.64	

	Ī										
Date	Depth m	W. T. °C	Cl %	au	$O_2 \atop \mathrm{m} l/l$	Date	Depth m		Cl %	τ	${ m O_2} \ { m m} l/l$
	0	25. 6	13.06	1. 77	6. 37		0	26. 0	13. 64	2.07	5. 65
	1	"	13, 21	1.86			1	24. 6	14. 82	1.47	
	2	"	13, 47	1.83	5.82		2	23. 5	15. 90	1. 16	6. 13
	3	23. 2	15. 72	2. 19			3	23. 0	16. 29	1.04	
8 hr	4	21.6	16, 72	1. 36		11 hr	4	22. 9	16. 34	1.00	
0	5	21.4	16. 76	1.41			5	22.8	16. 40	"	
	6	21.0	16, 90	1. 36			6	22. 5	16. 50	1. 13	
	7	20.8	16. 94	1. 23			7	21.7	16.86	1. 18	
	8	"	"	1. 16			8	21.5	16. 93	"	
	9	20. 7	16, 98	"	:		9			"	
	0	25. 8	13, 26	1. 67	6. 52		0	26. 4	13. 46	1. 90	6.31
	1	"	"	1.80			1	25. 9	13.60	1. 93	
	2	25. 7	13. 62	"	6.04		2	23. 3	16. 10	1. 33	5. 67
	3	22. 4	16, 19	1. 67			3	22. 9	16. 42	1. 16	
9 hr	4	21.4	16. 82	1. 07		12 hr	4	22. 5	16. 52	1.33	
J 111	5	21.1	16. 92	0. 93	:	12	5	22. 1	16, 68	1.26	
	6	"	"	1. 13			6	"	"	1.11	
	7	20.8	17. 04	1.02			7	21.8	16, 82	1. 02	
	8	"	"	0. 93			8	21.7	16, 86	"	
	9	"	"	0.85	ļ		9			1. 18	i
	0	25. 9	13. 24	1. 83	5. 72						
	1	25. 8	"	1.80			,		ĺ		
	2	"	13. 78	1.67	5. 62						
	3	23. 7	15. 78	1.49							
10 hr	4	21.4	17. 04	0. 79							
10 111	5	20. 9	17. 26	"],]		J	
	6	20, 8	17. 22	1. 18					-		
	7	"	17. 18	0. 85							
	8	20. 7	17. 21	1.02		ı					
	9	"	"	0.81							

Table 3. Water qualities at the observational station outside of the Daiō Bay.

Date	Depth m	W. T. °C	Cl ‰	τ	${ m O_2 \atop ml/l}$	Date	Depth m	W. T. °C	Cl %	au	$rac{ m O_2}{ m m}l/$
	0	25. 4	12. 99	1. 20	7. 53		0	25. 7	12. 83	1. 59	7. 40
Aug. 10,'65	1	25. 6	12. 85	0.42	l		1	26. 3	12.80	0.83	
	2	25. 4	14. 72	0. 26	6. 38		2	25. 9	13. 48	0. 68	6. 74
	3	24.8	15. 11	0. 23			3	23.6	15. 43	0. 63	
	4	24.0	15. 30	0. 37			4	23. 1	16. 21	0. 57	
	5	23. 2	16. 15	0. 17			5	22. 5	16.86	0. 52	
	6	22.6	16. 65	0, 14			6	22. 2	17.05	0. 47	
	7	22. 0	16. 93	0. 12			7	"	"	"	
	8	21.6	17. 22	0. 10			8	21.8	17. 25	0. 42	
11 hr	9	21.5	17. 26	0.06		13 hr	9	21.6	17. 35	"	
1.4	10	"	"	"	Į.	10	10	21.4	17. 46	0. 32	
	11	21.4	17. 29	0.02	į		11	21. 3	17. 49	"	
	12	21. 2	17. 39	"			12	21.1	17. 58	0. 52	
	13	21. 1	17. 42	"			13	20.8	17. 71	0. 42	
	14	21. 0	17. 46	0. 14	.		14	20. 7	17. 75	"	
	15	20. 9	17. 55	"	1		15	20. 6	17. 79	0. 47	
	16	20.8	17. 58	0. 30	l		16	20. 5	17. 83	0. 55	
	17	20. 6	17.66	0. 63			17	20. 4	17. 87	0. 98	
	18				1		18	.			
	19						19			,	
	0	26. 4	13. 11	1. 47	7. 69		0	26. 2	13. 31	1. 78	7. 02
	1	"	13. 05	0.83			1	25.8	13. 19	0.68	
	2	25. 7	13. 31	0.66	6. 77		2	24. 5	13. 88	0. 32	6.68
	3	24. 5	14. 93	0.60		:	3	22. 9	14. 83	0.30	
	4	23. 6	15. 83	0. 50			4	22. 3	16. 17	0. 37	
	5	22. 8	16. 76	0. 45			5	21.9	17. 09	0. 21	
	6	22. 2	17. 01	0. 42			6	21.6	17. 30	. //	
	7	21.9	17. 18	"	į,		7	21.5	17. 34	0. 23	
	8	21.6	17. 31	0. 35			8	21. 3	17. 44	0. 28	
12 hr	9	21.5	17. 34	0.60	-	14 hr	9	"	"	0. 21	
	10	21.4	17. 44	0. 32			10	21. 1	17. 49	0. 10	
	11	21.3	17. 47	0. 30	l.		11	21. 0	17. 57	"	
İ	12	21. 2	17. 50	"			12	20. 5	17. 79	0. 14	
1	13	21. 1	17. 53	0. 35			13	20. 4	17.84	0. 19	
	14	20. 9	17. 61	0. 68			14	20. 3	17. 88	"	
	15	20. 6	17. 73	11			15	"	"	0. 21	
	16	"	17. 75	"			16	20. 1	18. 03	0. 37	
	17	20. 4	17. 83	0.89	#		17	20. 0	18. 08		
	18						18				
}	19	1	1	1	-		19	1	1	1	

Date	Depth m	W. T. °C	Cl %	τ	${ m O_2} \atop { m m}l/l$	Date	Depth m	W. T. °C	CI %	au	${ m O_2 \atop ml/l}$
	0	27. 5	12. 55	1.31	6. 65		0	26. 2	14.00	0.50	6.30
	1	26.0	13. 13	0. 57			1	24.8	15. 24	0. 26	
	2	25. 3	13. 97	0.68	5. 84		2	23. 5	15. 81	0. 17	5.38
	3	23. 9	14. 95	0. 47			3	22. 6	16. 53	0. 21	
	4	22. 6	15. 98	0. 52			4	22. 2	16. 71	0. 17	
	5	21.7	16. 87	0. 32			5	21.8	17. 30	0. 14	
	6	21. 5	17. 17	"			6	21.6	17. 41	0. 23	
	7	21.4	17. 30	"			7	21.4	17. 49	"	
	8	21. 3	17. 33	0. 28			8	21.3	17. 53	0. 19	
15 hr	9	21. 2	17. 38	0. 19		17 hr	9	21. 2	17. 56	0. 14	
	10	. "	17. 41	"			10	21.0	17. 62	0. 21	
	11	20. 7	17. 61	"			11	20. 3	17. 91	"	
	12	20. 5	17. 70	0.14			12	20. 1	17. 99	//	
	13	20. 3	17. 79	0.19			13	"	17. 93	0. 23	
	14	"	"	0. 23			14	20. 0	17. 98	0. 26	
	15	"	"	"			15	19. 9	18. 04	0. 35	
	16	20. 1	17. 83	1. 23			16	19.8	18. 08	0. 80	
	17						17	19. 7	18. 12	ĺ	
	18						18				
	19						19				
	0	26. 7	13. 27	0. 77	6. 24		0	25. 9	14. 05	0. 50	6. 17
	1	25. 6	14. 13	0. 35			1	"	13. 91	0. 55	
	2	25. 3	14. 57	0. 42	6. 20		2	22. 5	15. 51	0. 32	5. 24
	3	23. 2	15. 78	0. 37			3	22. 2	16. 50	0. 35	
	4	22. 2	16. 25	0. 42			4	22. 0	16. 70	"	
	5	21.7	17. 37	0. 32			5	21. 5	17. 30	0. 32	
	6	21.4	17. 49	0. 28			6	21.3	17. 43	"	
	7	"	"	0. 26			7	21. 1	17. 49	0. 21	
	8	21.3	17. 55	"			8	20. 9	17. 59	0. 26	
16 hr	9	21. 1	17. 61	0. 19		18 hr	9	20. 6	17. 71	0. 21	
10 111	10	20. 9	17. 65	"		10 111	10	20. 2	17. 87	0.30	
	11	20. 3	17. 88	0.45			11	"	"	0.40	
	12	20. 1	17. 95	0. 57			12	20. 1	17. 91	0. 37	
	13	"	"	0. 42			13	20. 0	17. 94	0. 47	
	14	"	"	"			14	19. 9	17. 99	0. 57	
	15	"	"	0. 45			15	19.8	18. 03	0. 63	
	16	20. 0	17. 99	0. 66			16	19. 6	18. 13	0. 55	
	17	19. 9	18. 04	0. 83			17	19. 5	18. 17	0. 50	
	18						18				
	19			ĺ			19				

Date	Depth m	W. T.	CI %	τ	${ m O_2} \atop { m m}l/l$	Date	Depth m	W. T. °C	Cl ‰	τ	${ m O_2 \atop ml/l}$
	0	25. 3	14. 85	0. 35	5. 76		0	25. 6	14.61	0.50	5. 88
	1	25. 0	14. 99	"			1	25. 2	15: 00	"	
	2	24. 4	15. 33	0. 28	5. 68		2	24.9	15. 25	0.45	5. 73
	3	23. 5	16. 10	0. 21			3	23. 9	16.08	0. 28	
	4	23. 0	16. 41	11			4	22. 4	16.65	0. 23	
	5	22. 7	16. 95	0.30			5	22. 2	17. 13	"	
	6	22. 4	17. 07	0. 32			6	21.8	17. 39	"	
	7	21.6	17. 39	0. 35			7	21. 5	17. 52	0. 26	
	8	21. 4	17. 65	0. 28			8	21.3	17. 60	0. 37	
19 hr	9	21.0	17. 79	"		21 hr	9	"	"	"	
13 111	10	20. 5	18. 01	0.35		21	10	21.1	17. 67	0.42	
	11	20. 2	18. 09	0.40			11	20.6	17.89	0.32	
	12	20. 1	18. 13	//			12	20. 5	17. 93	0.37	
	13	20.0	"	0. 50			13	20. 3	18. 03	0.71	
	14	19.8	18. 22	0. 52			14	20. 2	18. 07	0. 57	
	15	19. 7	18. 26	0.60			15	20.0	18. 15	"	
	16	19. 6	18. 31	0. 52			16	19.8	18. 24	0.66	
	17	19. 5	18. 35	0. 50			17	"	"	0. 42	
	18	"	"	0. 57			18	"	"	0. 55	
	19						19	19. 6	18. 33	0. 74	
	0	25. 4	14. 73	0. 45	5. 84		0	25. 7	13. 65	0.86	5. 86
	1	25. 3	15.01	11			1	25. 4	14. 49	0.50	
	2	23. 7	15. 99	0. 28	5. 42		2	25. 3	14. 72	0. 47	5. 75
	3	23. 5	16. 10	"			3	25. 1	15. 03	0. 38	
	4	"	16. 14	"			4	23. 0	16. 42	0. 17	
	5	23. 1	16. 75	"			5	21.8	17. 34	0. 19	
	6	22.0	17. 17	0.37			6	"	17. 38	"	
	7	21.4	17. 43	0. 52			7	21.6	17. 47	"	
	8	21.2	17. 73	0.60			8	21.4	17. 56	0. 26	
20 hr	9	"	"	0. 52		22 hr	9	21.3	17. 60	0. 32	
20 111	10	21.0	17. 79	0. 47			10	21. 1	17. 67	0. 37	
	11	20.8	17. 88	0.42			11	"	17. 69	"	
	12	20. 4	18. 03	0.50			12	"	"	0. 42	
	13	20. 2	18. 11	0.63			13	21.0	17.73	"	
	14	20. 1	"	//			14	20. 7	17.86	0. 50	
	15	19.9	18. 19	0.71			15	20. 4	17. 99	0. 47	
	16	19.8	18. 23	0.60			16	20. 1	18. 11	0. 77	
	17	19. 7	18. 28	"			17	20.0	18. 15	0. 63	
	18						18	19. 9	18. 19	0. 37	
	19						19	19. 7	18. 29	0.60	

Date	Depth m	W. T. °C	Cl %	au	${ m O_2 \atop ml/l}$	Date	Depth m	W. T. °C	Cl %	τ	${ m O_2 \atop ml/l}$
	0	25. 6	14. 16	0. 77	5. 87		0	25. 9	13. 41	0.89	5. 64
	1	"	"	0.66			1	<i>,,</i> ·	"	0. 92	
	2	25. 2	14. 73	0. 45	5. 78		2	"	13. 49	0. 83	5. 93
	3	23. 6	16. 07	0. 23			3	25. 0	14. 96	0.42	
	4	23. 2	16. 38	0.32			4	22.8	16. 53	0. 26	
	5	22. 1	17. 21	0. 30			5	22. 0	17. 26	"	
	6	21.8	17. 33	0. 28			6	21.3	17. 55	0. 17	
	7	21.6	17.41	0. 26			7	21.2	17. 67	0. 14	
	8	21.4	174. 9	0. 23			8	21.1	17. 71	0. 28	
23 hr	9	21.3	17. 53	0. 14		1 hr	9	21.0	17. 75	0. 26	
20	10	11.	"	"		*	10	"	"	0. 28	
	11	21. 2	17. 56	0. 19			11	20. 9	17. 80	"	
	12	21. 1	17. 60	"			12	"	"	0. 26	
	13	"	"	"		-	13	"	"	0. 23	
	14	"	"	"			14	20.8	17. 85	0. 21	
	15	21.0	17.64	//			15	20. 7	17. 89	0. 17	
	16	20. 7	17. 77	0. 37			16	20. 5	17. 96	0. 23	
	17	20. 6	17. 81	0. 42			17	20. 2	18, 09.	0. 47	
	18	20. 2	17. 97	0. 77			18	20. 1	18. 13	0. 63	
	19	19.8	18. 15				19				
	0	25. 8	13. 47	0. 77	5. 84		0	25. 5	14. 57	0.80	5. 85
	1	"	13. 89	0.66			1	25. 2	14. 49	0. 52	
Aug. 11,'65	2	25. 7	14. 09	0. 52	7. 29		2	24. 9	14. 97	0.42	6. 59
	3	25. 5	14. 19	0. 47			3	23. 3	15. 90	0. 23	
	4	23. 5	16. 27	0. 19			4	22. 9	16. 47	"	
	5	23. 2	16. 84	0. 21			5	22. 1	17. 25	0. 26	
	6	22. 5	17. 16	0. 17			6	21.6	17. 43	0. 30	
	7	21.8	17. 43	0. 21			7	21.5	17. 56	0. 32	
	8	21.6	"	"			8	21.2	17. 67	0. 26	
0 hr	9	"	"	0. 26		2 hr	9	21.0	17. 75	0. 28	
·	10	21.4	17. 52	0. 21		~	10	20. 7	17. 87	"	
	11	"	"	0. 23			11	20.6	17. 93	"	
	12	21. 2	17. 59	0. 17			12	20. 4	18. 07	0.30	
	13	21. 1	17. 67	0. 28			13	"	"	0. 35	
	14	21.0	17. 70	0. 35			14	20. 3	18. 11	"	
	15	20. 8	17. 81	0.40			15	"	"	0.40	
	16	20. 7	17. 85	"			16	20. 2	18. 14	0. 45	
	17	20. 6	17. 89	0. 55			17	"	"	0. 47	
	18	20. 1	18. 08	0.66			18	20, 1	18. 19		
	19						19				

Date	Depth m	W. T. °C	Cl ‰	τ	$O_2 \atop \mathrm{m} l/l$	Date	Depth m	W. T. °C	CI ‰	au	${ m O_2} \atop { m m}l/l$
	0	25. 3	13. 47	0.60	5. 70		0	25. 8	14. 25	0.63	5. 77
	1	25.8	12. 43	"			1	25. 3	14. 51	"	
	2	25. 0	14. 25	0. 28	5. 60		2	24. 8	14. 84	0. 52	5. 30
	3	23. 6	15. 33	0. 21			3	23. 6	15. 57	0. 28	
	4	22.8	16. 29	"			4	22. 3	16. 43	"	
	5	22. 4	16. 99	"			5	21.8	17. 25	"	
	6	21. 4	17. 61	0. 26			6	21.3	17.69	"	
	7	21.3	17. 64	"			7	21. 1	17. 75	"	
	8	21. 1	17. 71	"			8	21.0	17.84	"	
3 hr	9	"	"	0. 28		5 hr	9	"	//	"	
3 111	10	20. 9	17. 84	0. 26		3 111	10	20. 9	17. 89	"	
	11	20. 8	17. 88	"			11	20. 6	18.01	"	
	12	20. 7	17. 92	"			12	20. 3	18. 13	0.35	
	13	20. 5	18. 01	0. 23			13	20. 2	18. 17	"	
	14	20. 3	18. 09	0. 28			14	20. 1	18. 21	0. 37	
	15	20. 2	18. 13	0. 32			15	20. 0	18. 26	0.45	
	16	"	"	0. 35			16	"	18. 21	0. 50	
	17	"	"	0. 37			17	19. 9	18. 26	0. 55	
	18		·				18				
	19	,					19				
	0	25. 5	13. 47	0. 77	5. 78		0	25. 9	14. 24	0.60	5. 80
	1	25. 9	13. 65	0. 74			ı	"	14. 17	0. 52	
	2	"	13. 77	0. 77	5. 83		2	25. 3	14. 35	0. 47	5. 66
	3	22. 9	15. 15	0. 28			3	23. 2	16. 13	0. 21	
	4	22. 1	16. 49	0. 32			4	22. 3	16. 77	0. 28	
	5	21.6	17. 42	0. 30			5	21. 6	17. 47	"	
	6	21.3	17. 73	"			6	21. 3	17.80	0. 21	
	7	21. 2	17. 83	0. 28			7	21. 2	17. 84	"	
	8	21. 1	17. 88	. //			8	20. 9	17. 97	0. 23	
. 1	9	"	17. 85	0.30		6 hr	9	20. 8	"	' //	
4 hr	10	21.0	17. 88	0. 26		6 111	10	20. 7	18. 02	"	
	11	20. 7	18. 01	"			11	20. 3	18. 17	0. 32	
	12	20. 5	18. 07	0.30			12	20. 1	18. 24	0.30	
	13	20. 3	18. 18	0. 32			13	"	"	"	
	14	20. 2	18. 21	"			14	20.0	18. 28	0. 32	
	15	//	"	"	1		15	"	"	"	
	16	"	"	"			16	. "	"	"	
	17	"	"	0. 57			17	19. 9	18. 33	0. 45	
	18						18	"	"	"	
	19						19				

Date	Depth	W. T. °C	Cl %	τ	$O_2 \atop ml/l$	Date	Depth m	W. T. °C	Cl %	τ	O_2 ml/l
	0	25. 8	14. 11	0. 55	5. 77		0	25. 7	13. 55	0.74	6.06
	1	"	14. 05	0. 50	0		1	25. 8	13. 67	"	0.00
	2	"	14. 11	"	5. 76		2	25. 6	14. 41	0. 55	5. 61
	3	23. 0	16. 37	0. 21			3	23. 0	16. 37	0. 28	
	4	21. 9	17. 02	0. 30			4	21. 9	16. 93	0.40	
	5	21.6	17. 56	"			5	21. 2	17. 75	0.30	
	6	21. 2	17. 79	"			6	21. 1	17. 80	0. 23	
	7	21.0	17. 88	0. 23			7	"	"	"	
	8	"	17. 84	"			8	"	17. 87	"	
7 hr	9	20. 8	17. 93	"		9 hr	9	21.0	17. 90	"	
7 111	10	20. 7	17. 97	0. 21		9 111	10	20.8	17. 99	0. 21	
	11	20. 4	18. 10	0. 26			11	20.6	18. 07	0. 23	
	12	20. 2	18. 11	0.30			12	20. 3	18. 19	0. 30	
	13	20. 0	18. 22	"			13	20. 2	18. 22	"	
	14	"	"	"]		14	20. 1	18. 26	0. 35	
	15	19. 9	18. 27	0. 32			15	20.0	18. 30	"	
	16	"	"	"			16	19. 9	18. 35	"	
	17	"	11	"			17	"	"	0. 45	
	18	"	"	0.40			18	19. 7	18. 45	0.86	
	19						19	"	"	1. 16	
	0	25. 6	13. 59	0. 71	5. 83		0	25. 9	13. 33	0. 89	6. 36
	1	25. 7	13. 53	0. 74			1	25. 7	14. 11	0. 71	
	2	25. 8	13. 93	0. 57	5. 95		2	23. 9	15. 97	0. 45	5. 86
	3	23. 3	16. 37	0. 26			3	22. 3	16. 89	0. 42	
	4	21.6	17. 14	0. 37			4	22. 0	17. 02	"	
	5	21.5	17. 64	0.40			5	21. 9	17. 43	0.40	
	6	21.3	17. 81	0. 26			6	21.8	17. 57	0. 42	
	7	21. 1	17. 89	0. 23			7	21.5	17. 71	0. 32	
	8	"	"	"			8	21.4	17. 75	"	
8 hr	9	20. 8	17. 99	"		10 hr	9	21. 2	17. 83	0. 23	
	10	"	"	"	,	10	10	21.0	17. 91	0. 21	
	11	20. 5	18. 09	0. 26			11	20.8	17. 99	"	
	12	20. 4	18. 14	0. 28			12	20. 5	18. 09	"	
	13	20. 1	18. 26	0. 35			13	20. 4	18. 15	"	
	14	20. 0	18. 28	"			14	20. 3	18. 19	0. 28	
	15	"	"	"			15	20. 2	18. 21	0.30	
	16	19. 9	18. 33	0. 45		and a second	16	20. 1	18. 25	0. 32	
	17	19.8	18. 37	0. 42	i		17	19. 9	18. 33	0. 37	
	18	"	' //	0. 45			18	"	"	0. 92	
	19						19				

Date	Depth m	W. T.	Cl ‰	τ	${ m O_2 \atop ml/l}$	Date	Depth m	W. T.	Cl ‰	τ	${ m O_2 \atop ml/l}$
	0	26. 0	13. 71	1.09	5. 83		0	24. 8	15. 44	0. 47	6. 19
	1	25. 9	14. 20	0.89			1	24. 4	15. 58	"	
	2	22.8	16. 57	0. 57	5.11		2	24. 1	15.81	"	5. 42
	3	22. 2	16. 89	"			3	23. 2	16. 41	0.35	
	4	21.9	17. 10	0.60	į		4	22. 4	16.85	0. 57	i
	5	21.7	17. 55	0. 35		12 hr	5	22. 1	17. 35	0.60	
	6	21. 5	17.64	0.30			6	. "	17. 43	0. 42	
	7	21. 4	17. 71	//			7	22. 0	"	"	i
	8	11	17. 73	0. 28			8	21.6	17.61	0.32	
11 hr	9	21.3	17. 76	"			9	"	"	0. 30	
11 111	10	"	"	0. 23			10	21.4	17.69	"	
	11	21. 1	17. 83	0. 21			11	21.3	17. 74	0. 28	
	12	20. 9	17. 96	"				12	"	"	0. 26
	13	20.6	18. 05	0. 28	j		13	21.0	17.81	0. 19	
	14	20. 5	18. 09	"			14	20.8	17. 93	"	
	15	20. 3	18. 19	0.30			15	20.6	18.01	0. 26	
	16	"	"	0.32		1	16	20. 5	18.06	0. 35	
	17	"	"	0.35			17	20. 3	18. 13	1.02	
	18	20. 2	18. 22	0. 43			18				
	19						19				

小割内の魚群の行動

調査日の小割の状況

6月の調査時は種苗を入手した翌日であり、この時の魚体重は平均12g、放養尾数6,300尾、小割の大きさは $5 \times 5 \times 4.5$ m、目あいはモジ網の5mm目であった。網は投入したばかりで付着物はほとんど認められなかったが、水面上10cm位の位置まで多少残餌の付着があり、また連日の降雨のため小割外水域には浮遊物がかなり目だつ状態にあった。

8月の調査時には魚の大きさは第4表に示したように成長していて、平均魚体重は209g、放養尾数1,300尾、この時の小割の大きさは5×5×4.5 m、目あいは3cmのものであって、網は調査日の朝取り替えが行なわれたために付着物は全くない状態にあった。

以上の結果から魚 1 kg当りの小割の水溶積は 6 月には 1.4m^3 , 8 月には 0.4m^3 であって,小割式の養魚としては放養密度は杉本ら(1965)の報告のものに比べると疎であるといえる。

Table 4. Body length and weight of fish on Aug. 22,'65.

Body lengt	th	Weight	
21, 5	cm	195	g
20.0)	179	
20, 5	•	200	
23, 0)	275	
20. 5	,	200	
Average 21.1		209	

魚の群行動

6月の調査時には前述のように塩素量は1m層まで7%であること、また魚は入手した直後であることの2つの悪条件下にあったためか魚群は投餌の時以外にはほとんど浮上せず、小割内の底層部をゆるやかに旋回運動をしているにすぎず、昼夜の行動の差もあまり認められなかった。また流れの速い時には網はかなり変形し、水溶積は小さくなっていた。8月にはハマチも成長し日中の運動は活発であった。

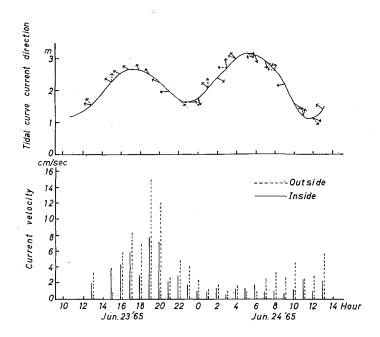


Fig. 4. Variation of Direction and velocity of current at floating net in a day.

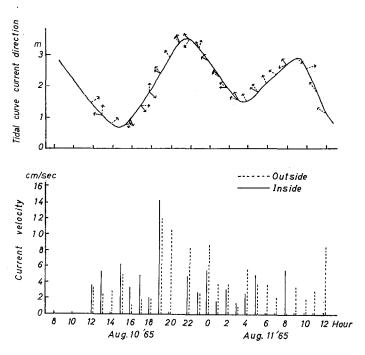


Fig. 5. Variation of direction and velocity of current at floating net in a day.

潮流により網の形はいろいろと変化するが、中央部が盛り上り周囲に深みを生じた場合にはハマチは2つのグループに分れて深みにあわせて旋回運動をしており、この盛り上りの場所を通る時の行動などはすこぶる飯しょうで、つぎの深みに移動するとまた緩漫な行動をしていた。魚群行動の最も活発なのは投餌の時であって、ついで夜明けの4時ごろから8時ごろまでの間は活発な旋回運動を行なっていた。また動きの緩漫なのは22時すぎから4時ごろまでの夜間であってその間はゆるやかな旋回運動をしていたが、静止の状態にあることはなかった。これは観察のため点燈していることが原因となっているのかもしれない。魚群の旋回運動が活発な時および投餌の時には小割内には渦流を生じ、渦流の中心には小さなくぼみも認められた。

小割内外の流向流速

調査の結果を第4図および第5図に示した。図にみられるように小割外の流速が4cm/sec以上の時には、小割内の流向は小割外の流向とほぼ一致するが、4cm/sec以下になると小割内の流向は小割外の流向とかなりの違いを示している。その割合を第5表に示した。このことは小割内の魚の群行動の影響が一因をなすものと考えられるが、この小割は放養密度がかなり疎であるので密に放養している場合はこの現象はさらにはげしくなるものと思われる。

D .	777	Differ	erence between both directions				
Date	Times of observation	0°	1°-45°	46°-89°	90°-95°		
June 23-24 '65	2 4	10	9	4			
Aug. 10-11 '65	2 4	Eddy current 8	11	2			

Table 5. Difference between current directions of inside and outside of fish farm.

また小割内に渦流を生じていたのは、6月の調査時には投餌の時に瞬間的に小さなものが認められたにすぎなかった。しかし8月には投餌の時および4時から10時の間の活発な時に渦流を生じ、海流板は魚の群行動につれて回転またはジグザグの動きを示しその時の海流板の速さは $1\sim3\,\mathrm{cm/sec}$ であった。

6月の小割内の流速は $0.5\sim7.7$ cm/sec であって24回の調査回数中13回が4cm/sec 以下であり,8月の小割内の流速は $1.6\sim14.3$ cm/sec で24回の調査回数中13回が4cm/sec 以下に減速している。小割内外の流速の平均値は第6表に示す通りで,両者の比は6月で60.3%,8月で70.2%となり網の抵抗による流速の減小は

Date	Inside of fish farm	Outside of fish farm	Inside Outside
June 23-24 '65	2. 4 cm/sec	3.98 cm/sec	60, 3
Aug. 10-11 '65	3, 19	4, 54	70, 2

Table 6. Average current velocities at the fish farm.

かなり大きいことを示している。また8月の調査で小割内の流速が小割外の流速より速い結果がみられるが、 これは魚の動きによる加速ではないかと考えられる。しかしこの点は十分に明らかにすることができなかっ た。

小割の海水の交流量

上述の小割内の平均流速を用いて、1 潮時の海水の交流量を求めると第7表の通りになる。この値から交流率を計算すると205~218となりかなり良好であるといえる。また小割内外の溶存酸素量の差から交流率を求めると6月は282となり、8月は小割内外の溶存酸素量に差がなかったので求められなかった。この両者から求めた交流率には多少の差が認められる。以上は1潮時の平均流速でもとめたものであるが、交流量の

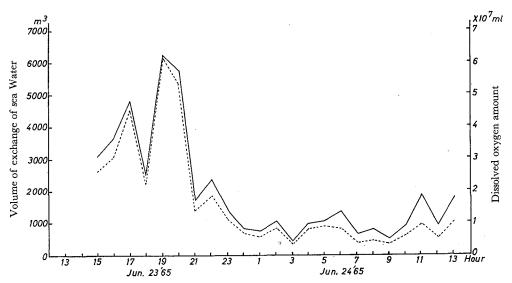


Fig. 6—1. Variation of exchanged volume and dissolved oxygen of sea water in floating net.

——— Volume of exchange of sea water.

——— Dissolved oxygen amount.

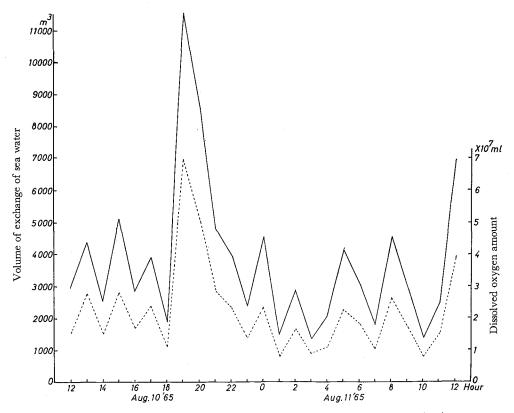


Fig. 6—2. Variation of exchanged volume and dissolved oxygen of sea water in floating net.

Volume of exchange of sea water.

Dissolved oxygen amount.

Table 7. Volume of exchanged sea water in the fish farm.

Date	Averaege current velocity	Volume of exchange	Mesh of net
June 23-24 '65	cm/sec	m³	
10:37-22:47	2.4	23716.8	5 mm
22:47-11:37	2.4	25550, 0	
Aug. 11-12 '65			
8:23-21:36	3.2	34214.4	3 cm
21:36-9:07	3, 2	29289.6	

時間的変化および溶存酸素の補給量の時間的変化を求めると第 6 図-1,第 6 図-2に示す通りかなり変動がはげしくとくに 8 月の変動は顯著であった。橘高の方法(1965)によって求めた単位時間当りに補給される溶存酸素の最小量は $3\times10^6 \mathrm{m}l$ (6 月), $75\times10^5 \mathrm{m}l$ (8 月) である。 この養魚場のハマチおよび海水の 1時間当りの酸素量は約 $50,300\mathrm{m}l$ (6 月), $158,350\mathrm{m}l$ (8 月) であると考えられるので 最小約 4 倍量の溶存酸素が残存することになる。

上述のようにこの小割の放養量は疎であるので溶存酸素量の面からは問題にならないが,一般の小割ではかなり密に放養されているので,単位時間当りの交流量を求め,最小交流量によって放養量は検討すべきであろう。したがって平均流速を用いて交流量を求めるのはかなり危険であると考える。

摘 要

- 1. 広島県似島大黄湾にある小割についてその海水の交流を明らかにした。
- 2. 大黄湾の流向は湾外の北東流,南西流にしたがって反時計回りおよび時計回りの環流が主体をなし,湾外の流速がおとろえるとこの環流の傾向はくずれて複雑となる。小割のおかれている湾奥部の流速は湾外の流速の約16に低下していた。
- 3. 小割内の流速は小割外の流速の60.3~70.2%に低下し、潮流の速いときは小割内外の流向はほぼ同一であるが、流速がおとろえるにつれてその傾向はくずれてくる。この原因は魚の群行動も一因をなしているものと考えた。
- 4. 小割内の魚の群行動は日の出どろから約4時間の間はかなり活発であり、最も活発なのは投餌の時である。夜間は20Wの螢光燈を点燈した条件のもとで魚はゆるやかに回遊していて静止することはなかった。 群行動の活発な時には小割内に渦流が生じるがその流速は $1\sim3$ cm/sec 程度であった。
- 5. 小割では交流量の時間的変化もはげしいので、1 潮時の交流量の時間的変化を求め、単位時間当りの最小交流量を基礎として放養量を検討すべきであると考える。

文 献

愛媛県水試. 1965:昭和39年度魚類養殖環境要因調查.

江草周三. 1963:全国湖沼河川養殖研究会. 第4回人工湖利用部会要録、

橘高二郎. 1965:ハマチの養殖について. 水産増殖, 7 (1), 7-30.

松江吉行編. 1962: 溶在酸素. 水質汚濁調查指針, 122-126.

日本気象学会. 1949:海流及び潮流の測定(測流). 海洋観測法, 69-87.

長崎県水試. 1965:昭和39年度魚類養殖環境要因調查.

杉本仁弥. 久岡実. 野上和彦. 竹内脩. 鈴木正也. 1965: 海域における養魚場の海水交流に関する研究— I. 本誌、(23).

杉本仁弥. 野上和彦. 久岡実. 1965:昭和39年度魚類養殖環境要因調査取りまとめ.