急勾配斜面に設置した遊水部付き消波工を 有する堤体の機能性・耐波安定性に関する研究

大村智宏*1・新井雅之*2・中山哲嚴*2

Study on wave control function and stability on vertical structure with a detached mound made of wave-dissipating concrete blocks for steep bottom slope

Yoshihiro OHMURA*1, Masayuki ARAI*2 and Akiyoshi NAKAYAMA*2

Abstract In Japan, not only breakwaters but also seawalls inside surf zone are normally covered with wave-dissipating concrete blocks in front of the vertical wall. The placement of wavedissipating concrete blocks is helpful to reduce wave overtopping, transmitted waves and wave pressure acting on the wall. The vertical structure with a detached mound made of wavedissipating concrete blocks (hereinafter referred to as "the detached type") is a kind of structure. It is basically pointed out that the detached type is more effective than the conventional type in both wave control function and stability. But the values of wave overtopping rate, wave transmission coefficient and time-averaged water elevations in wave chamber on the detached type may not be estimated quantitatively. Moreover the wave pressure acting on the wall is not proved for steep bottom slope. Therefore, we have carried out the experiment to examine the performance of the detached type using 2 models for bottom slope of 1/10 in a long wave flume. The volume of fluid method is employed in numerical simulation. As a result of both physical model test and numerical simulation, the values of wave overtopping rate, wave transmission coefficient and time-averaged water elevations are confirmed for slope of 1/10. It is also found out that the wave pressure acting on the wall shows impulsive wave pressure at around still water level.

Key words: detached type, wave overtopping, transmitted wave, wave pressure, physical model test, numerical simulation

漁港では,荒天時における波浪や風などの外力に対 して,利用対象船が安全に係留できるように泊地の静 穏性を確保するとともに,漁港施設用地の利用に支障 が生じることのないように,各種施設を適切に配置す ることがもとめられる。その際,漁港の利用対象船が 小型漁船であることが多く,かつ漁業活動に不可欠な 機能施設が水際線に近接,集積していることから,防 波施設には高い波浪制御機能が備わっていることが必 要である。また,漁港に近接する漁港海岸では,海岸

2005年2月10日受理 水産総合研究センター業績水工研C第27号

*2 水產土木工学部水理研究室

背後に漁村集落などが存在することから, 荒天時に越 波量が許容範囲内となるように, 消波施設を適切に配 置することが不可欠である。

これら防波・消波施設の構造体としては,機能性お よび耐波安定性の双方を勘案して,波のエネルギーを 積極的に逸散する消波ブロックがこれまで多く用いら れてきた。消波ブロックを用いた代表的な構造体とし ては,直立堤の前面壁を消波ブロックで被覆する消波 ブロック被覆堤のほか,消波ブロック式の傾斜堤,潜 堤が知られている。直立堤と離岸式傾斜堤を組み合わ せた構造もあり,遊水部付き消波工を有する堤体(防 波堤・護岸)とよばれている。ここでは,遊水部付き 消波工を有する堤体を取りあげることとする。

遊水部付き消波工を有する堤体は,既設の消波ブロ ック被覆堤の波浪制御効果をさらに向上させる際に有 効である。端趾圧や景観といった制約をうけて,既設 の直立堤の天端を嵩上げできない場合には,直立堤を 被覆していた消波ブロックを離岸式傾斜堤部分に移設 することにより,越波や伝達波の制御機能の向上をは かることができる。また,新規に防波・消波施設を整 備する場合には,消波ブロック式傾斜堤を直立堤に先 行して施工することができるため,消波ブロック被覆 堤よりも施工性に優れるといえる。

一般的に,波浪制御構造体の機能は,防波堤として の性能を伝達波高で評価して,護岸としての性能を越 波量で評価している。遊水部付き消波工を有する堤体 は,もっぱら越波量に着目した実験的研究がおこなわ れてきた(椹木ら,1975;合田,岸良,1976;佐伯ら, 1980;西,山本,1981;影山,山本,1981;西,山本, 1982;中山ら,1986;間辺,山本,1988;笹島ら, 1993;山本ら,1997)。たとえば,中山ら(1986)は 斜面勾配1/10,1/30,遊水部の長さを入射波長の0.1 倍程度,消波工の天端ブロック2個並び,法勾配1:1.3 として不規則波実験をおこない, 遊水部付き消波工 を有する護岸は消波工付護岸と比較して,1/10勾配で 0.07~0.4倍, 1/30勾配で0.1~0.5倍に越波流量が低減 されること, 同一の許容越波流量に対して, 遊水部 付き消波工を有する護岸の直立堤天端高は, 消波工付 護岸の直立堤天端高の0.5~0.9倍に低減できることを 明らかにしている。このように,遊水部付き消波工を 有する護岸は,規則波のみならず不規則波に対しても 消波工付護岸と比較して越波流量の低減効果が大きい ことがわかっているものの,既往の実験的研究では構 造諸元が限られたものとなっており,必要に応じて実 験することがもとめられる。

一方,遊水部付き消波工を有する堤体の直立壁に作 用する波圧・波力については,佐伯ら(1980),影山, 山本(1981)が規則波実験をおこなっているほか,中 泉,山本(1989),山本ら(1996)が不規則波実験を おこなっている。このうち,中泉,山本(1989)は, 1/30勾配斜面,遊水部の長さを入射波長の0.1倍程度, 消波工の天端ブロック3個並び,法勾配1:1.3としてお こなった実験結果から,遊水部付き消波工を有する堤 体の直立壁に作用する波力が消波ブロック被覆堤の直

Fig. 1.遊水部付き消波工を有する堤体の標準断面および 直立堤前面壁に作用する波圧分布

立壁に作用する波力(森平ら(1967)の波圧式を仮定) と比較して同程度あるいは小さくなる場合の波圧の設 計式を提案している。この波圧式は、「漁港・漁場の 施設の設計の手引2003年版、(水産庁監修,2003)」 (以下、「手引」という)において採用されており、 1/30勾配よりも緩い勾配斜面に対して適用してよいと されている(Fig.1)。しかしながら、1/30勾配より も急な勾配斜面における波圧・波力特性はわかってお らず、必要に応じて水理模型実験を実施しなければな らない。

そこで本研究では,遊水部付き消波工を有する堤体 を1/10勾配斜面かつ大水深に設置した場合の波浪制御 機能および耐波安定性の把握を目的として,長水路で の水理模型実験と自由水面を有する非圧縮性粘性流体 を対象とした数値計算をあわせて実施して検討をおこ なったので報告する。

水理模型実験の方法

実験施設

水理模型実験は,Fig.2に示す独立行政法人水産総 合研究センター水産工学研究所の漁港水理実験棟還流 風洞付造波水路(長さ100.0m,幅1.0m,高さ1.5m) でおこなった。この長水路の一端には反射波吸収制御 式ピストン型造波装置が,他端には再反射波を防ぐた めの砕石およびヘチマロンよりなる5.0m分の消波材が 設置されている。1/10勾配斜面は,水平距離8.0mの区 間で水路床から0.80mの高さまで一様勾配となるよう に,それに続く水平床は8.0mとしている。この1/10勾 配斜面と水平床は,長さ200cm,幅100cm,厚さ 2.0cmの鉄板を用いて製作し,水路壁との隙間をシリ コンシーラントで埋めた。

Fig. 2.水理模型実験で用いた長水路の諸元

堤体模型の構造諸元

遊水部付き消波工を有する堤体には,Fig.3に示す 2タイプの構造模型CASE1,CASE2を用いた。直立堤 はABS樹脂およびアクリル板で製作し,離岸式消波工 はおよそ640gの質量のテトラポッド(コンクリート製) を乱積して製作した。消波工の天端高hc,天端幅B, 遊水部幅(直立堤から消波工までの離岸距離)/など の構造諸元は,作用波浪および「手引」をもとにして 決定したものである。

このうち, CASE1は消波工の天端高 h_c と直立堤の天 端高Rとの比が $h_c/R = 0.556$ であり,「手引」において 海底勾配1/30より緩勾配斜面で耐波設計上,要求され る構造諸元としている。遊水部幅Iについても,構造 物設置位置での波長Lに対してI = 0.1L程度であり, 「手引」で要求される距離を設定した。直立堤の設置 水深 h_c は $h_c = 22.3$ cmである。伝達波高の実験において は,直立堤のパラペットおよび堤体幅を拡幅した。

一方,CASE2は消波工の天端高と直立堤の天端高と の比がh./R=0.905であり,越波流量および直立壁への 作用波圧の低減効果がCASE1と比較して,より高いこ とを期待して設定した構造体である。遊水部幅は,同 じく構造物設置位置での波長に対してI=0.1L程度と している。直立堤の設置水深はh=20.5cmである。

なお,ここで想定した模型の縮尺は,ともに1/20~ 1/40程度である。

作用波浪

実験では,規則波およびBretschneider・光易型スペ クトルの不規則波を用いた。作用波の諸元はTable 1 に示すとおりであり,水路床での造波水深かはCASE1 でh = 102.3cm(波圧実験ではh = 101.0cmも併せて実 施), CASE2でh = 100.5cmとして,規則波4波種,不 規則波3波種を基本波として設定した。これらの作用

Fig.3.遊水部付き消波工を有する堤体模型の構造諸元

波について,造波後,現象が安定した後の水位変動に 対してゼロアップクロス法を適用し,個々の波の波高, 周期を定義した(合田,1968;高山,神山,1976;合 田,1990)。不規則波では最高波,1/10最大波,有義 波に,規則波では算術平均波に整理するとともに, FFT法による入・反射波の分離(合田ら,1976)をお こない進行波の波高を算出した。また,換算沖波波高 H_0 'は,造波波高(不規則波では有義波高)を計測し た位置での浅水係数 K_0 で除して算定している。その際, 浅海アーセル数 U_5 (= gHT^2/h^2)が30未満であったこ とから,微小振幅波理論から算定される浅水係数を用 いた(首藤,1974;水理公式集,1999)。

実験項目および計測方法

以下に述べる4項目の実験をおこなった。

進行波実験

Fig.4に示すように,遊水部付き消波工を有する堤体を設置しない場合の造波波浪の特性および一様勾配斜面上の波浪変形を把握するため,容量式波高計(検出部:KENEK,CHT6-40,CHT6-60,CHT6-100,本体部:KENEK,CH-604,CH-608)を用いて水位変動を計測した。造波波浪の確認用として水路床の1地点(入反射波分離用に2本の波高計を配置)と1/10勾配斜面肩から沖側まで6m区間の斜面上8地点にそれぞれ波高計を配置した。データは,造波して現象が安定した後,規則波でおよそ10波分,不規則波でおよそ200波分をサンプリングタイム20msでAD変換して収集した。

	目標波高(cm)	目標周期(s)	造波水深(cm)	浅水係数
	16.0	1 70	100.5	0.918
<u>.</u>	10.0	1.79	102.3	0.919
小規	14.0	1.00	100.5	0.914
則	14.9	1.90	102.3	0.915
収	16.0	2.06	100.5	0.913
	10.0	2.00	102.3	0.913
	161	1 70	100.5	0.919
	10.1	1.79	102.3	0.918
	20.0	1 70	100.5	0.919
規則	20.0	1.79	102.3	0.918
則波	22.0	1 70	100.5	0.919
	23.9	1.79	102.3	0.918
	20.0	1 70	100.5	0.919
	20.0	1.79	102.3	0.918

Table 1.作用波の諸元

越波量実験

Fig. 5 に示すように,構造模型CASE1, CASE2のそ れぞれについて,作用波と直立堤上の越波量を計測し た。越波量は,幅1.0mの水路に設置した直立堤前面壁 の中央部50cm幅を越波した水を集水升に集めて,こ れを荷重計(検出部:東京計測,S645,定格容量 0.98kN,100kgf,アンプ:共和電業,MCC-16A, DPM-11A,応答周波数2.5kHz,最大測定範囲± 5000×10°ひずみ)により計測した。水位変動は,容 量式波高計を用いて測定した。これらのデータは,造 波して現象が安定した後,規則波でおよそ10波分,不 規則波でおよそ200波分をサンプリングタイム20msで AD変換して収集した。

伝達波実験

Fig. 6 に示すように,構造模型CASE1のパラペット および堤体を拡幅して,作用波と伝達波を測定した。 造波波浪の確認用として水路床の1地点(入反射波分 離用に2本の波高計を配置)と直立堤の背後壁から 62.5cm,162.5cm,362.5cmの3地点に容量式波高計 を配置して,水位変動を測定した。データは,造波し て現象が安定した後,規則波でおよそ10波分,不規則 波でおよそ200波分をサンプリングタイム20msでAD 変換して収集した。

波圧実験

Fig. 7 に示すように,構造模型CASE1, CASE2のそ れぞれについて,直立堤の前面壁中心線上の7箇所に 波圧計(検出部:三計エンジニアリング,P310-02, 定格容量19.6kPa,200gf/cm²,アンプ:共和電業, MCC-16A,DPM-11A,応答周波数2.5kHz,最大測定 範囲±5000×10⁶ひずみ)を取り付けて,壁に作用す る波圧を計測した。データは,造波して現象が安定し た後,規則波でおよそ10波分,不規則波でおよそ200

(単位; cm)

Fig.4.進行波実験の計測方法模式図

波分をサンプリングタイム200µsでAD変換して収集 した。そして,波圧合力にLow Pass Filterをかけて, その波圧合力のゼロアップクロス点間の最大値を1波 力と定義するとともに,波圧合力のゼロアップクロス 点間において発生する各波圧の最大値を1波圧として 定義した。波圧は,最高波圧,1/10最大波圧,1/3最 大波圧に整理した。さらに,同時刻に発生する各計測 点の圧力から波力を求め,最高波力,1/10最大波力, 1/3最大波力として整理した。また,水位変動は,容 量式波高計を用いて,波圧の計測時間と同時間のデー タをサンプリングタイム20msでAD変換して収集し た。

(単位; cm)

Fig. 5. 越波量実験の計測方法模式図

(単位; cm)

Fig.7.波圧実験の計測方法模式図

数値計算の方法

VOF法

自由水面を有する非圧縮性粘性流体の流体現象を解 析的に取り扱う方法のひとつにVOF法 (Volume of Fluid Method) がある。VOF法はもともとHirtらの研 究グループによって研究・開発された手法であり,波 動などの流体運動の解析において有力な手法として知 られている (Nichols et al., 1980; Torrey et al., 1985), また、ソースプログラムが公開されていることもあり、 CFDの分野では粒子法などとならんでさまざまな流体 現象の解析において広く用いられてきた。このVOF法 の発展系としてCADMAS-SURF (SUper Roller Flume for Computer Aided Design of MAritime Structure) Ver. 4.0 (沿岸開発技術研究センター, 2001)がある。 CADMAS-SURFの特長としては,基礎方程式にポーラ スボディモデル(榊山ら,1990)が組み込まれており, 消波ブロックや捨石などの透過性構造物を取り扱うこ とができるという点があげられる。さらに,数値波動 水路で無反射造波境界を実現しており、複雑な波動現 象の解析に優れていることを著者らも検証している (大村ら, 2003; 中村ら, 2003; Ohmura et al., 2005)。 本研究では,このCADMAS-SURFを用いて,遊水部付 き消波工を有する堤体の越波現象を検討することとし た。

CADMAS-SURFの方程式系および解法

CADMAS-SURFでは,2次元非圧縮性粘性流体に対 するNavier-Stokesの方程式にポーラスボディ(多孔質 体)モデルを用いたものを基礎方程式(式(1)~(3)) として採用している。これらの基礎方程式は,スタッ ガードメッシュ系としてコントロールボリューム法に より空間的に離散化されて,SMAC法(Simplified Marker and Cell method)(Amsden and Harlow, 1970) による時間発展型として計算される。その際,内部の 流体として計算することができない自由表面について は,式(4)に示すVOF関数Fの移流方程式にDonor-Acceptor法を適用して取り扱われる。

<u>連続方程式</u>

$$\frac{\partial \gamma_x u}{\partial x} + \frac{\partial \gamma_z w}{\partial z} = q_s(z,t) \tag{1}$$

<u>運動方程式</u>

$$\lambda_{v} \frac{\partial u}{\partial t} + \frac{\partial \lambda_{x} u u}{\partial x} + \frac{\partial \lambda_{z} w u}{\partial z} = -\frac{\gamma_{v}}{\rho} \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left\{ \gamma_{x} v_{e} \left(2 \frac{\partial u}{\partial x} \right) \right\}$$

$$+ \frac{\partial}{\partial z} \left\{ \gamma_{z} v_{e} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right\} - D_{x} u + u q_{s}(z, t) - R_{x}$$

$$(2)$$

$$\lambda_{v} \frac{\partial w}{\partial t} + \frac{\partial \lambda_{x} uw}{\partial x} + \frac{\partial \lambda_{z} ww}{\partial z} = -\frac{\gamma_{v}}{\rho} \frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left\{ \gamma_{x} v_{e} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right\} + \frac{\partial}{\partial z} \left\{ \gamma_{z} v_{e} \left(2 \frac{\partial w}{\partial z} \right) \right\} - D_{z} w + w q_{s}(z,t) + \frac{v}{3} \frac{\partial q_{s}(z,t)}{\partial z} - R_{z} - \gamma_{v} g$$
(3)

<u>VOF関数Fの移流方程式</u>

$$\gamma_{v} \frac{\partial F}{\partial t} + \frac{\partial \gamma_{x} uF}{\partial x} + \frac{\partial \gamma_{z} wF}{\partial z} = Fq_{s}(z,t)$$
(4)

ここで,*t*:時間,*x*,*z*:それぞれ水平方向,鉛直方 向の座標,*u*,*w*:それぞれ水平方向,鉛直方向の流 速, ρ :水の密度,*p*:圧力,*v*_e:分子動粘性係数およ び渦動粘性係数の和,*g*:重力加速度, γ :空隙率, γ_e , γ_e :それぞれ水平方向,鉛直方向の面積透過率, λ_v , λ_x , λ_z :それぞれ構造物の存在による慣性力, D_x , D_e :それぞれ水平方向,鉛直方向のエネルギー減衰帯 における係数,*q*(*z*,*t*):造波ソース,*R*_x,*R*_z:それぞ れ水平方向,鉛直方向のポーラスボディからの抵抗力 である。

これら基礎方程式中にある構造物の存在による慣性 力およびポーラスボディからの抵抗力については,そ れぞれ式(5),(6)に示すようにモデル化されている。 また,エネルギー減衰帯(式7))(Eric Cruzら,1993) およびSommerfeldの放射条件(式(8))を組み合わせ ることにより,式(9)に示す造波ソースを任意の位置 に設定することができる。

構造物の存在による慣性力

$$\lambda_{v} = \gamma_{v} + (1 - \gamma_{v})C_{M}$$

$$\lambda_{x} = \gamma_{x} + (1 - \gamma_{x})C_{M}$$

$$\lambda_{z} = \gamma_{z} + (1 - \gamma_{z})C_{M}$$
(5)

<u>ポーラスボディからの抵抗力</u>

$$R_{x} = \frac{1}{2} \frac{C_{D}}{\Delta x} (1 - \gamma_{x}) u \sqrt{u^{2} + w^{2}}$$

$$R_{z} = \frac{1}{2} \frac{C_{D}}{\Delta z} (1 - \gamma_{z}) w \sqrt{u^{2} + w^{2}}$$
(6)

<u>エネルギー減衰帯における係数</u>

$$D_{x} = \theta_{x} \sqrt{\frac{g}{h}} (N+1) \left(\frac{x-x_{0}}{l}\right)^{N}$$

$$D_{z} = \theta_{z} \sqrt{\frac{g}{h}} (N+1) \left(\frac{x-x_{0}}{l}\right)^{N}$$
(7)

<u>Sommerfeld</u>の放射条件

$$\frac{\partial f}{\partial t} + C \frac{\partial f}{\partial x} = 0 \tag{8}$$

<u>造波ソース</u>

$$q_s(z,t) = \frac{2U_s(z,t)}{\Delta x_s} \tag{9}$$

ここで, C_M :慣性力係数, C_p :抗力係数, Δx , Δz :それぞれ水平方向,鉛直方向の格子間隔,h:水深, l:エネルギー減衰帯の長さ(=2L), x_0 :エネルギー 減衰帯の開始位置,N:分布関数の次数(N=2), θ_x , θ_z :無次元係数(θ_x =0.6, θ_z =0.6),f:物理量,C: 波速, Δx_s :造波ソースでの格子間隔, U_s (z,t):造 波用流速(ストークス波第5次近似解あるいはクノイ ド波第3次近似解)である。

計算条件

Fig. 8 に数値計算で用いた水路および構造体の設置 位置を示す。これは,水路長を除いて,水理模型実験 で用いた地形および堤体模型と同じとなるように設定 したものである。作用波は規則波であり,水理模型実 験結果と比較・検討するため,造波波高H_i=15.0~ 30.0cm,周期T=1.79sとした。計算条件は,榊山,今 井(1996),榊山,香山(1997)の研究成果を踏まえ てTable 2 に示すとおりに設定した。

直立堤の越波流量 (*t*)は,式 10)に示すように直立 堤の前面壁上 (*x* = *x*₁, *z*₁ ≤ *z* ≤ *z*₂)の水平方向流速に VOF関数を乗じて算定した。

$$q(t) = \int_{z_1}^{z_2} u(x_1, z, t) F(x_1, z, t) dz$$
 (10)

Table 2. VOF法の計算条件

計算領域	長さ(x-)3,000cm , 高さ(z-)150cm
	$x = 0 \sim 1,960$ cm , $x = 4.0$ cm
	x=1,960~2,000cm, xを暫減:
計算格子	隣り合う格子間隔の比1.0~0.9倍
	x = 2,000 ~ 3,000cm , x=1.0cm
	$z = 0 \sim 150 \text{cm}$, $z = 1.0 \text{cm}$
造波ソース	x = 1,352cm
	x=0.0cm, Sommerfeldの放射条件
境界条件	2波長分のエネルギー減衰帯
	x=3,000cm,Sommerfeldの放射条件
	$x = 0 \sim 2,000 \text{ cm}$, $z = 0 \text{ cm}$
底面地形	<i>x</i> = 2,000~2,800cm,1/10勾配斜面
	$x = 2,800 \sim 3,000$ cm , $z = 80$ cm
堤体設置位置	x=2,800cm;直立堤前面壁
牧法西の关八法	DONOR-0.1
修 流頃の左方法	(中心差分と風上差分の割合,9:1)
VOF関数F	フリー
その他境界・諸量	スリップ条件
ポーラス値下限値	0.0001
気泡上昇速度	0.2m/s
水滴落下速度	フリー
	空隙率V1=0.5,慣性力係数CM=1.2
府	抗力係数C _D =1.0
造波時間	静水状態から30s間
時間刻コの安全変	0.25(CFL条件および粘性項の安定条件から
时间刻のの女王平	決まる時間刻み幅に掛ける安全率)
サンプリングタイム	<i>T</i> /100

Fig.8.数値計算で用いた水路諸元および堤体の配置位置

結果および考察

進行波実験

不規則波のスペクトル形状

Fig.9に沖側の水路床で計測した不規則波の入射波 スペクトルをBretschneider・光易型スペクトルとあわ せて示す。計測した入射波スペクトルは、Bretschneider ・光易型スペクトルと比較して高周波数側においてエ ネルギーがカットされている。これはFFT法による 入・反射波の分離を用いていることから,分離推定の 際の有効範囲外となるスペクトルがカットされている ためである。図から計測した入射波スペクトルは, Bretschneider・光易型スペクトルに対してあわせ込み が十分におこなわれていると判断できる。

なお、CASE1およびCASE2の堤体模型を設置した場合の不規則波の入射波スペクトルは、反射波吸収制御の効果から進行波実験における入射波スペクトルと違いがみられなかった。

Fig. 9.入射波スペクトル

不規則波の波高分布

Table 3 に沖側の水路床で計測した不規則波の最高 波高Hmax, 1/10最大波高H1/10, 有義波高H1/13の関係を示 す。また, Fig. 10は造波波高分布をRayleigh分布(式 (11))とあわせて示したものである。

$$p_r\left(\frac{H}{\overline{H}}\right) = \frac{\pi}{2} \frac{H}{\overline{H}} \exp\left\{-\frac{\pi}{4} \left(\frac{H}{\overline{H}}\right)^2\right\}$$
(11)

ここで, P.: 確率密度関数, H: 平均波高である。 進行波実験における各波高の関係は,表よりHmax = (1.42~1.73) Hn/3, Hn/10 =(1.25~1.33) Hn/3となってお り,1/10最大波高と有義波高の関係は,ほぼRayleigh 分布にしたがったものとなっていることがわかる。し かし,最高波高Hmaxは波浪条件によってバラツキがみ られるとともに,一般的に海岸・海洋構造物の設計で

Fig. 10.造波波高分布とRayleigh分布曲線

目標波高(cm)	16.0	14.9	16.0	16.0	14.9	16.0
目標周期(s)	1.79	1.90	2.06	1.79	1.90	2.06
造波水深(cm)	100.5	100.5	100.5	102.3	102.3	102.3
$H_{max}(cm)$	22.4	23.7	26.8	22.9	24.7	28.3
H1/10(cm)	19.8	18.9	20.9	20.2	19.3	21.4
H1/3(cm)	15.8	14.5	16.1	15.9	14.5	16.4
T1/3(S)	1.72	1.80	1.92	1.74	1.77	1.94
Hmax / H1/3	1.42	1.63	1.66	1.44	1.70	1.73
<i>H</i> 1/10 / <i>H</i> 1/3	1.25	1.30	1.30	1.27	1.33	1.30

Table 3. 不規則波の最高波高Hmax, 1/10最大波高H_{1/10}, 有義波高H_{1/3}の関係

用いられるH_{max} =(1.6~2.0) H_{1/3}の関係と比較すると, 最高波高は小さいといえる。また,Rayleigh分布と比 較して,平均波高よりも波高の大きい側で造波した波 の出現頻度が小さいことが図からわかる。これらの理 由としては,波形勾配が大きいことから沖側の水路床 で砕波が生じており,特に波高の大きい波で波高減衰 の影響が大きかったことが考えられる。また,実験で 用いた造波システムでは,信号作成能力の限界から波 のランダムさがおよそ50波分になっていることを確認 している。いずれにしても作用波の諸元は,越波量実 験,伝達波実験,波圧実験の各実験の実施に支障を生 じることがないものと判断した。

越波量・伝達波実験

遊水部における水位上昇量

Fig. 11は遊水部の中央における水位上昇量につい て,水理模型実験結果とVOF法計算結果とをあわせて 示したものである。VOF法による水位上昇量ηは,式 (12)のとおり遊水部の中央における水位変動(*t*)を5 *T*分時間平均して算出した。図中では,直立堤設置水 深かと換算沖波波高H⁻¹との比を横軸に,平均水位上昇 量ηとH⁻¹との比を縦軸として無次元化している。

$$\bar{\eta} = \frac{1}{5T} \int_{30-5T}^{30} \eta(t) dt$$
 (12)

規則波の実験結果に着目するとCASE1, CASE2とも に水深波高比h/H³が1.0以下となる領域で水位上昇 量・波高比η/H³がおよそ0.25~0.38となっており, 菅原,山本(1978)による1/10勾配斜面地形での規則 波の砕波に伴うWave Set-upと比較して,より大きな 水位上昇が生じている。この水位上昇のメカニズムは, 消波工の天端上を越波して遊水部へ打ち込む水量と, 消波工が透過抵抗となりつつ遊水部から沖側へと戻る 水量がバランスするために,遊水部において水位上昇 が発生するということで説明できる。また, CASE1, CASE2の実験結果はともにh/H³とη/H³がほぼ直線関 係となっているが,消波工の天端高がより高いCASE2

Fig. 11. 遊水部における水位上昇量

の水位上昇量がCASE1と比較して15%程度小さいこと がわかる。一方,不規則波では両ケースともにη/H。 =0.1程度であり,規則波ほど明瞭な差がみられない。

計算結果と実験結果を比較すると,CASE1では一致 度は必ずしも良いとはいえないものの,バラツキは概 ね20%程度の範囲内におさまっている。CASE2では良 好な一致を示しており,水位上昇量の算定において VOF法が有効な検討手法であることがわかった。

越波特性

Fig. 12にCASE1の計算結果の一例を示す。T/8毎の 時系列図であり,水表面はVOF関数F=0.5でコンター を描いたものである。この時の進行波としての波は, Surf Similarity Parameter(砕波帯相似パラメター) ξ_0 =0.43でありPlunging Breaker(巻き波砕波)と Spilling Breaker(崩れ波砕波)の遷移領域にあること から,S-P砕波を伴いながら波が構造体に作用してい る状況であるといえる。

図から遊水部付き消波工を有する堤体の越波特性と しては,消波工の天端上を越波して遊水部へ打ち込む 水塊が,遊水部幅の制約から直立堤前面壁にあたり鉛 直方向に押し上げられることによって,越波が生じて いることがわかる。また,先に述べた水位上昇のメカ ニズムについても,図から読み取ることができる。こ れらの現象は,水理模型実験においてみられたものと 同じであり,VOF法が現象を適切に表現していること が明らかになった。

越波流量

Fig. 13は直立堤の天端高と換算沖波波高の比R/H⁴ をパラメターとして無次元越波流量q/2gH³を示したものである。規則波および不規則波の実験結果ともに,

Fig. 12. CASE1へ作用する波の状況(Ho '=27.5cm, T=1.79s, 表示範囲: 250cm×90cm)

Fig. 13. 無次元越波流量

R/H。が小さくなるにしたがって無次元越波流量は指数関数状に増加しており,図中で直線関係が成立していることがわかる。同一の*R/H*。ではCASE1の方がCASE2よりも10倍程度越波流量が多い結果が得られた

が,これは消波工の天端上を越波・越流して遊水部へ 打ち込む水量が消波工の天端高と換算沖波波高の比 h/H/によって規定された効果であるといえる。また, 不規則波の波群中のうち最高波によって引き起こされ るであろう最大越波流量(短時間越波流量)が図中の 規則波実験結果からほぼ推測できるものと仮定する と,最大越波流量は平均越波流量よりも100倍程度大 きい値となることが推察される。Fig. 14に示すように, 通常の消波ブロック被覆堤の期待越波流量(合田ら, 1975)と比較すると,CASE1で1/3~1/10に,CASE2 で1/10~1/50に越波流量を低減する性能を有している ことが明らかになった。

Fig. 15はCASE1を対象におこなった越波流量(t)の 計算結果の一例を示したものである。波が1/10勾配斜 面上で砕波しながら構造体に作用していることや,そ れによって引き起こされる水位の変動により,規則波 ではあるものの各時間の越波流量にバラツキがみられ る。本計算条件の場合,瞬間越波流量の最大値は平均 越波流量の8.7~29.3倍,そしてその越波の作用時間は およそT/5未満となっており,短時間に大きな越波が

Fig. 14. 遊水部付き消波工を有する堤体の不規則波越波 流量と消波ブロック被覆堤の期待越波流量

Fig. 16. 波高伝達率

Fig. 15. 越波流量の時系列 (VOF法, H^a'=27.5cm, T=1.79s)

生じていることがわかる。このため,平均越波流量の みならず短時間越波流量やその瞬間越波流量について も考慮することが施設利用上の観点から必要であると いえる。

数値計算結果では,上述したように定常状態として どの時間の越波流量を平均化して平均越波流量を算定 するのが妥当であるのか課題は残るが,ここでは式 (13)に示すように計算時間の最後5T分を用いること とした。

$$q = \frac{1}{5T} \int_{30-5T}^{30} q(t) dt$$
 (13)

こうして算定した平均越波流量を先に示したFig. 13 に実験結果とあわせて記載した。CASE1の波高が大き い2ケースでは,計算結果および実験結果との越波流 量の一致度は高いもものの,ほかの2ケースでは最大 4倍程度の差が生じている。また,図中でプロットし た4ケース以外では越波流量が生じておらず,CASE2 では有意な越波流量が計測されなかった。無次元越波 流量が10³より小さい値を示していないことから,こ れよりも小さい越波流量を計算するためには,より小 さい空間分解能が必要となることが推察される。VOF 法では計算に多大な時間を要することから,現象に応 じた空間分解能をどのように設定するのか今後に課題 が残るが,VOF法が有効な検討手法であることは明ら かとなった。

伝達波高

CASE1を対象におこなった伝達波高の実験結果を Fig. 16に示す。図中では直立堤の天端高と進行波実験 で計測した直立堤設置位置での進行波としての波高の 比R/Hをパラメターとして,波高伝達率Kを整理して いる。波高伝達率は,直立堤背後1m地点で計測した 伝達波高を直立堤設置位置の進行波としての波高で除 したものと定義した。本構造体では越波量が小さいこ とから越波による2次波の発生も小さく,波高伝達率 は規則波でも0.07程度が最大となっていることがわか る。CASE1は「手引」で要求される必要最小限の構造 諸元であり,かつ漁港の防波堤の標準断面はR/H_i= 1.0が一般的であることからすると,遊水部付き消波 工を有する防波堤は越波による2次波の発生をほとん ど生じないことが明らかになった。

作用波圧

波圧強度

ここでは, CASE1の不規則波実験結果の一例を取り あげることとする。Fig. 17は直立壁で計測した作用波 圧pについて,各測定点での最大波圧強度と最大波力 時の波圧強度,各測定点での1/10最大波圧強度と1/10 最大波力時の波圧強度とをあわせて示したものであ る。図中では,堤体を設置しない状態で計測した直立 堤設置位置での進行波としての有義波高Hu3と水の単

Fig. 17. 波圧強度分布 (CASE1, H_{1/3}=19.6cm, T_{1/3}=1.74s, h₂=21.0cm)

Fig. 19. 断面平均波圧強度

Fig. 18.波圧強度および波圧合力の時系列 (CASE1, H_{1/3}=19.6cm, T_{1/3}=1.74s, h₂=21.0cm)

位体積重量wwを用いて無次元表示した。静水面はz= 0 cmである。波条件は,実験波の中で最大波圧強度 が大きかった $H_{1/3}$ = 19.6cm, $T_{1/3}$ = 1.74s, h_2 = 21.0cmで ある。図より静水面上z/H1/3 = 0.14においてpmax/W0H1/3 =4.0程度となっており、衝撃的な波圧が作用してい ることがわかる。Fig. 18はこの時に記録された波圧の 時系変化を示したものである。波圧合力および波圧強 度の最大値が発生した前後1ms程度ではそれぞれの 値がほぼ半減しており,衝撃的な波圧の作用は極めて 短い時間で生じていることがわかる。この位置で最大 波圧強度が生じるのは,遊水部での水位上昇による影 響と考えられる。また, z/H_{1/3}=0.98に取り付けた波 圧計においてはpmax/W0H1/3=1.5程度を記録している が、これは波高の大きい時に消波工を越波した波が遊 水部へ打ち込むことから生じたものと考えられる。し かしながら,同位置における最大波力発生時では pmax/WoH1/3=0となっており,波圧強度の最大値を記録

した時と最大波力発生時とのあいだに時間差があるこ とがわかる。一方,1/10最大波力時の波圧強度につい ては,静水面下および静水面上*z/H*_{1/3} = 0.14の位置ま で*p*_{1/10}/*w*₀*H*_{1/3} = 0.6程度のほぼ一様な圧力分布であり, そこから静水面上1.0*H*_{1/3}で*p*_{1/10}/*w*₀*H*_{1/3} = 0となる三角形 分布となっている。これは先にFig.1で示した設計時 の波圧分布と同じ波圧分布をなしていることがわか る。

断面平均波圧強度

Fig. 19はCASE1およびCASE2の無次元断面平均波圧 強度P/woH1/3を示す。横軸は消波工の天端高と進行波 としての波高との比h:/H1/3をパラメターとした。ここ での断面平均波圧強度は,同時波圧合力のピーク値を 取り出して,波の処理方法と同様に最大波力Fmax, 1/10最大波力F1/10,有義波力F1/3を算定し,これらを (h2+0.5H1/3)で除した値をそれぞれ最大波圧強度Pmax, 1/10最大波圧強度P1/10,有義波圧強度P1/3と定義した。

図より1/10最大,有義波圧強度ともにP/wbHv3が1.0 未満の値になっていることがわかる。最大値について はhc/Hv3=0.64程度でもPmax/wbHv3が1.3をやや超えて いるが,中泉,山本(1989)の断面平均波圧強度の定 義Fmax/(h2+0.5Hmax)wbHv3によると,最大波圧強度に ついてもその値は1.3未満となる。よって,断面平均 波圧強度としての取り扱いをすると,「手引」で採用 されている波圧の設計公式は1/10勾配斜面においても 適用できる結果となる。なお,先に述べたように波圧 合力および波圧強度の最大値が発生した前後1ms程 度でそれぞれの値がほぼ半減していることから,波圧 合力および波圧強度の最大値の取り扱いについて,今 後さらに検討する必要がある。

まとめ

本研究では,遊水部付き消波工を有する堤体を1/10 勾配という急勾配斜面かつ大水深に設置した場合を対 象として,水理模型実験とVOF法の数値計算を実施し た。これにより,遊水部付き消波工を有する堤体の越 波流量,水位上昇量,伝達波高および直立堤への作用 波圧などについて,その水理特性を概ねつかむことが できた。主要な結果をまとめるとつぎのとおりであ る。

遊水部付き消波工を有する堤体の越波特性として は,消波工の天端上を越波して遊水部へ打ち込む水 塊が,遊水部幅の制約から直立堤前面壁にあたり鉛 直方向に押し上げられることによって,越波が生じ る。

規則波の実験結果では,CASE1,CASE2ともに水深 波高比 h/H_0 'が1.0以下となる領域で水位上昇量・波 高比 η/H_0 '=0.25~0.38と大きな水位上昇が生じる。 また,両ケースとも h/H_0 'と η/H_0 'は,ほぼ直線関係 を示す。この水位上昇は,消波工の天端上を越波し て遊水部へ打ち込む水量と,消波工が透過抵抗とな りつつ遊水部から沖側へと戻る水量がバランスする ために生じる。一方,不規則波は両ケースともに η/H_0 '=0.1程度であり,規則波ほど明瞭な差はみら れない。

通常の消波ブロック被覆堤と比較すると, CASE1で 1/3~1/10に, CASE2で1/10~1/50に越波流量を低 減する性能がある。しかし,不規則波の波群中のう ち最高波によって引き起こされるであろう最大越波 流量(短時間越波流量)を規則波実験結果から推測 できるものと仮定すると,最大越波流量は平均越波 流量よりも100倍程度大きい値となることが推察さ れる。

VOF法の数値計算結果では,瞬間越波流量の最大値 は平均越波流量の8.7~29.3倍,そしてその越波の作 用時間はおよそT/5未満となっており,短時間に大 きな越波が生じている。このため,施設利用上の観 点を踏まえると,平均越波流量のみならず短時間越 波流量やその瞬間越波流量についても考慮すること が必要である。

遊水部付き消波工を有する防波堤は,越波量が小さ いことから越波による2次波の発生も小さい。漁港 の防波堤の標準断面はR/H=1.0が一般的であるこ とから,既存の防波堤を遊水部付き消波工を有する 防波堤に改良することにより,越波による2次波の 発生を大きく抑制することができる。 波条件によっては,直立堤前面壁に衝撃的な波圧が 発生することがある。ただし,最大波力および最大 波圧の発生するピークの前後1ms程度では,それ ぞれの値がほぼ半減していた。また,断面平均波圧 強度として取り扱うと,「手引」で採用されている 波圧の設計公式は1/10勾配斜面でも適用できる結果 が得られたが,波圧合力および波圧強度の最大値の 取り扱いを今後,さらに検討する必要がある。 遊水部付き消波工を有する堤体の越波現象の検討に おいて,VOF法の適用が有効であることがわかった。 しかし,計算に多大な時間を要することもあり,現 象に応じた空間分解能をどのように適切に設定する のか,今後の課題である。

おわりに

本研究の水理模型実験は,福井県越前漁港事務所か ら当研究所への委託業務「平成15年度広域漁港整備事 業(特定)水理模型実験業務委託その3」および「平 成15年度広域漁港整備事業(特定)水理模型実験業務 委託その9」でおこなった水理模型実験のうち,遊水 部付き消波工を有する堤体に係る部分を取りまとめた ものである。水理模型実験の計測業務は,国際気象海 洋株式会社,白土和幸,小林 学,滑川 順の3氏に よっておこなわれた。

進行波実験,越波量実験,伝達波実験,波圧実験の 各実験結果の一覧表をAppendix 1, 2, 3, 4にそれぞれ示 す。

参考文献

- Amsden A. A. and Harlow F. H., 1970: The SMAC Method: A numerical technique for calculating incompressible fluid flows. Los Alamos Scientific Laboratory of the University of California, LA-4370, 1-85.
- 土木学会水理委員会水理公式集改訂小委員会,1999: 水理公式集[平成11年版],社団法人土木学会, 東京,713pp.
- 沿岸開発技術研究センター,2001:数値波動水路の研 究・開発(CADMAS-SURF)-数値波動水路の耐 波設計への適用に関する研究会報告書-,沿岸開 発技術ライブラリー,No.12,財団法人沿岸開発 技術研究センター,東京,296pp.
- Eric Cruz, 横木裕宗,磯部雅彦,渡辺 晃, 1993: 非 線形波動方程式に対する無反射境界条件につい て.海岸工学論文集,40,46-50.

- 合田良実,1968:造波水路における波浪実験の二,三の問題点について.第15回海岸工学講演会講演集, 50-57.
- 合田良実,岸良安治,神山 豊,1975:不規則波によ る防波護岸の越波流量に関する実験的研究.港湾 技術研究所報告,14(4),3-44.
- 合田良実,岸良安治,1976:不規則波による低天端型 護岸の越波特性実験.港湾技研資料,242,1-28.
- 合田良実,鈴木康正,岸良安治,菊池 治,1976:不 規則波実験における入・反射波の分離推定法.港 湾技研資料,248,1-24.
- 合田良實,1990:[増補改訂]港湾構造物の耐波設計-波浪工学への序説-, 鹿島出版会,東京, 333pp.
- 影山智将,山本正昭,1981:離岸タイプ消波工の効果 について.水産工学研究所技報,水産土木,2, 51-66.
- 間辺本文,山本正昭,1988:遊水部を有する消波工付 護岸の越波に関する研究-南部海岸における越波 対策-.水産工学研究所技報,水産土木,10, 67-77.
- 森平倫生,柿崎秀作,菊谷 徹,1967:異形ブロック の波力減殺効果に関する研究.港湾技術研究所報 告,6(4),3-31.
- 中泉昌光,山本正昭,1989:遊水部付消波工を有する 防波堤に働く不規則波力に関する実験的研究.水 産工学研究所技報,水産土木,11,11-23.
- 中村孝幸,大村智宏,大井邦昭,2003:渦流制御を利 用する海水交換促進型防波堤の効果について.海 岸工学論文集,50,806-810.
- 中山哲嚴,山本正昭,間辺本文,1986:遊水部を有す る消波工付護岸の越波に対する研究(不規則波実 験).水産工学研究所技報,水産土木,7,217-229.
- Nichols B. D., Hirt C. W., and Hotchkiss R. S., 1980: SOLA-VOF: A solution algorithm for transient fluid flow with multiple free boundaries. *Los Alamos Scientific Laboratory*, LA-8355, 1-119.
- 西 裕司,山本正昭,1981:遊水部を有する消波工付 護岸の越波に関する実験的研究.水産工学研究所 技報,水産土木,2,33-49.
- 西 裕司,山本正昭,1982:遊水部を有する消波工付
 護岸の越波に関する研究.水産工学研究所報告,
 3,127-142.
- 大村智宏,中村孝幸,大井邦昭,中山哲嚴,2003:下 部通水式海水交換型防波堤の波浪制御効果に及ぼ す通水路の影響について.海洋開発論文集,19,

547-552 .

- Ohmura Y., Nakamura T., and Ohi K., 2005: Excitation of vortex induced currents by piston mode wave resonance in double-curtain walled breakwaters. *Proceedings of the 29th International Conference on Coastal Engineering*, ASCE.
- 佐伯 浩,菊地秀明,京谷 修,松井弘夫,尾崎 晃, 1980:分離式防波堤の水理機能と設計波圧につい て.第27回海岸工学講演会論文集,335-338.
- 榊山 勉,阿部宣行,鹿島遼一,1990:ポーラスボデ ィモデルによる透過性構造物周辺の非線形波動場 解析.海岸工学論文集,37,554-558.
- 榊山 勉,今井澄雄,1996:消波護岸の越波に関する 数値シミュレーション.海岸工学論文集,43, 696-700.
- 榊山 勉,香山真祐,1997:海底斜面上で砕波を伴う
 消波護岸への越波の数値計算.海岸工学論文集,
 44,741-745.
- 笹島隆彦,山中浩次,木村克俊,水野雄三,菊地聡一,
 1993:2重堤の水理特性について.海岸工学論文集,40,645-649.
- 椹木 亨,岩田好一朗,森永勝登,1975:海岸堤防前 面波高におよぼす離岸堤の設置距離の効果につい て(2次元モデルの場合)-離岸堤の効果に関す る研究 第2報-.第22回海岸工学講演会論文集, 415-420.
- 首藤伸夫,1974:非線形長波の変形 水路幅,水深の 変化する場合 - .第21回海岸工学講演会論文集, 57-64.
- 菅原輝男,山本正昭,1978:規則波の浅水変形計算モデル.農業土木試験場D(水産土木),20,1-21.
- 水産庁監修,2003:漁港・漁場の施設の設計の手引 (2003年版),社団法人全国漁港漁場協会,東京, 1008pp.
- 高山知司,神山 豊,1976:実験水路における波の伝 播について.第23回海岸工学講演会論文集,381-385.
- Torrey M. D., Cloutman L. D., Mjolsness R. C., and Hirt C. W., 1985: NASA-VOF2D: A computer program for incompressible flows with free surfaces. *Los Alamos National Laboratory*, LA-10612-MS, 1-137.
- 山本泰司,水野雄三,鈴木孝信,山中浩次,吉田 稔, 1996:二重堤直立部に作用する波力の算定法につ いて.海岸工学論文集,43,766-770.
- 山本泰司,水野雄三,鈴木孝信,笹島隆彦,松本英明, 桑原幸司,1997:二重堤の越波流量算定法につい て.海洋開発論文集,13,585-590.

(造波水深100.5cm)	
進行波実験結果	
Appendix 1(1).	

	反射率			0.136			0.115			0.209			0.188				0.096					0.086					0.098		
1-2	水路床	100.5	16.2	1.78	ı	21.8	1.79	ı	25.0	1.77	ı	27.6	1.78	,	22.4	19.8	15.8	1.72		26.8	20.9	16.1	1.92		23.7	18.9	14.5	1.80	
13	-400	20.5	9.0	1.79	1.07	8.5	1.64	2.03	8.9	1.80	2.77	7.1	1.29	3.30	15.1	12.4	11.0	2.01	0.40	16.7	12.5	11.0	2.15	0.47	16.0	12.0	10.8	1.98	0.26
12	-200	20.5	10.8	1.79	1.10	12.9	1.80	1.76	12.1	1.79	2.51	11.9	1.79	3.13	16.6	15.1	13.2	1.96	0.24	17.9	14.5	12.8	2.01	0.34	16.5	14.6	12.8	1.91	0.18
11	-100	20.5	16.2	1.50	0.65	11.7	1.30	1.44	14.4	1.80	1.84	11.3	1.65	2.42	21.7	17.7	15.1	1.84	0.09	21.9	17.7	15.2	1.97	0.18	19.0	17.7	15.5	1.88	0.02
10	600	80.5	15.3	1.79	-0.11	19.9	1.78	-0.31	24.9	1.79	-0.72	27.3	1.79	-0.84	23.0	20.0	15.3	1.76	0.07	23.6	18.7	14.0	1.90	0.07	24.3	17.1	13.3	1.75	-0.01
6	480	68.5	15.3	1.79	-0.01	20.3	1.78	-0.28	25.4	1.79	-0.77	27.7	1.79	-0.86	24.7	19.8	15.2	1.79	0.02	26.6	21.1	15.1	1.93	-0.02	24.0	17.0	13.2	1.78	0.00
8	300	50.5	15.3	1.79	-0.28	19.7	1.79	-0.51	24.1	1.79	-0.62	26.6	1.79	-0.76	25.8	19.6	15.3	1.75	0.03	24.7	19.9	14.9	1.96	-0.01	21.1	16.8	13.1	1.82	0.01
7	200	40.5	17.5	1.79	-0.12	22.8	1.78	-0.33	27.6	1.79	-0.59	31.4	1.79	-0.52	26.2	20.8	16.0	1.78	-0.06	26.6	21.1	16.0	2.01	-0.02	19.8	16.7	13.7	1.81	0.00
9	150	35.5	16.9	1.79	-0.10	22.1	1.79	-0.35	27.3	1.79	-0.71	29.6	1.79	-0.86	27.4	20.5	15.9	1.78	-0.07	27.6	21.7	16.4	1.98	-0.08	21.9	17.8	14.3	1.82	-0.02
5	100	30.5	17.4	1.79	-0.16	24.9	1.79	-0.23	28.8	1.79	-0.51	29.2	1.79	-0.63	27.2	21.6	17.0	1.72	-0.10	29.4	24.4	18.1	1.99	-0.05	24.2	19.0	15.1	1.83	-0.09
4	09	26.5	20.0	1.79	-0.09	26.2	1.79	-0.14	27.9	1.79	-0.04	28.3	1.79	0.28	28.3	22.4	17.5	1.78	-0.16	32.8	25.8	19.3	2.03	-0.06	25.4	20.0	16.0	1.85	-0.09
3	0	20.5	21.3	1.79	-0.46	23.6	1.81	-0.04	19.6	1.41	1.24	16.7	1.23	0.91	26.9	22.7	18.3	1.81	-0.11	25.6	23.5	19.4	2.03	-0.04	22.8	21.0	17.1	1.89	-0.10
[置	から ()	(cm)	(cm)	(s)	(cm)	(cm)	(cm)	(cm)	(s)	(cm)	(cm)	(cm)	(cm)	(s)	(cm)	(cm)	(cm)	(cm)	(s)	(cm)									
計測位	殺固肩: (cm	火洋	H_{mean}	T_{mean}	m	H_{mean}	T_{mean}	ш	H_{mean}	T_{mean}	ш	H_{mean}	T_{mean}	ш	$H_{\rm max}$	$H_{1/10}$	$H_{1/3}$	$T_{1/3}$	m	$H_{\rm max}$	$H_{1/10}$	$H_{1/3}$	$T_{1/3}$	m	$H_{\rm max}$	$H_{1/10}$	$H_{1/3}$	$T_{1/3}$	ш
周期	T	(S)		1.79			1.79			1.79			1.79				1.79					2.06					1.90		
目標波高・	H	(cm)		16.1			20.0			23.9			28.0				16.0					16.0					14.9		
Ĩ	作用油	Хí				L	!	現副	記決	Ę		L								L	۴ŧ	現副	R浜		L				

急勾配斜面に設置した遊水部付き消波工を有する堤体の機能性・耐波安定性に関する研究

┉:時間平均水位(上昇がプラス)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ł	目標波高	『・周期	計測化	立置	ω	4	5	9	7	8	6	10	11	12	13	1-2	
M (cm) 9 χ_{SS} (cm) 22.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3	⊨⊞∄	H	T	約回信 (cn	かつ	0	60	100	150	200	300	480	009	-100	-200	-400	水路床	反射率
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>N</i> Z	(cm)	(S)	水深	(cm)	22.3	28.3	32.3	37.3	42.3	52.3	70.3	82.3	22.3	22.3	22.3	102.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				H_{mean}	(cm)	20.5	20.4	18.1	15.6	17.1	14.7	14.9	16.3	14.0	12.1	9.1	16.2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		16.1	1.79	T_{mean}	(s)	1.79	1.79	1.79	1.79	1.79	1.79	1.80	1.79	1.49	1.73	1.79	1.77	0.229
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				ш	(cm)	-0.23	0.07	-0.19	-0.26	-0.23	-0.09	-0.20	-0.13	0.10	0.84	06.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				H_{mean}	(cm)	24.1	24.9	24.0	20.8	20.7	19.6	20.5	19.5	12.4	11.0	7.7	21.1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$!	20.0	1.79	T_{mean}	(s)	1.79	1.78	1.78	1.79	1.79	1.80	1.79	1.79	1.21	1.50	1.26	1.78	0.126
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	現副			ш	(cm)	-0.24	-0.13	-0.03	-0.19	-0.33	-0.40	-0.31	-0.44	0.76	1.48	1.69	ı	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	記法			H_{mean}	(cm)	21.4	28.3	28.4	26.3	25.8	24.1	24.9	24.4	12.8	12.9	7.4	24.8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	{	23.9	1.79	T_{mean}	(s)	1.52	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.41	1.80	1.29	1.78	0.212
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				н	(cm)	0.27	-0.50	-0.73	-0.78	-0.81	-0.52	-0.77	-0.71	1.13	1.92	2.21	,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				H_{mean}	(cm)	22.0	29.0	30.8	30.1	30.1	27.5	28.8	27.3	10.7	14.0	8.8	27.7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		28.0	1.79	T_{mean}	(s)	1.42	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.32	1.80	1.64	1.77	0.218
${\color{black}} \begin{array}{ c c c c c c c c c c c c c c c c c c c$				ш	(cm)	1.46	-0.09	-0.68	-0.76	-0.84	-0.47	-0.86	-0.83	1.82	2.76	2.95	'	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$H_{\rm max}$	(cm)	26.0	26.1	25.3	26.4	26.2	26.1	26.5	26.3	24.1	22.4	14.9	22.9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$H_{1/10}$	(cm)	23.2	22.0	20.8	19.9	20.1	19.8	19.7	19.3	19.6	16.1	13.2	20.2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		16.0	1.79	$H_{1/3}$	(cm)	18.6	17.5	16.6	16.0	15.6	15.4	15.3	15.0	16.5	13.6	11.7	15.9	0.108
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				$T_{1/3}$	(s)	1.85	1.77	1.75	1.74	1.74	1.73	1.74	1.72	1.84	1.89	1.98	1.74	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Ш	(cm)	-0.11	-0.06	-0.07	-0.07	-0.03	-0.05	-0.03	0.03	0.11	0.17	0.28	ı	
				$H_{\rm max}$	(cm)	25.8	31.7	31.4	28.4	27.8	26.3	27.6	25.5	22.1	19.3	14.9	28.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	K₽			$H_{1/10}$	(cm)	24.5	26.7	25.6	22.8	22.2	21.4	21.9	20.5	18.4	16.0	13.7	21.4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	恐則	16.0	2.06	$H_{1/3}$	(cm)	19.7	21.2	18.9	17.2	16.9	15.7	15.5	14.9	15.9	14.1	12.2	16.4	0.091
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	R 波			$T_{1/3}$	(s)	2.01	2.00	2.02	2.00	1.99	1.96	1.93	1.93	2.05	2.04	2.17	1.94	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				ш	(cm)	-0.09	-0.14	-0.13	-0.02	0.00	-0.01	0.02	0.04	0.09	0.28	0.40	ı	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$H_{\rm max}$	(cm)	24.2	25.6	26.3	22.8	21.7	21.3	24.4	24.6	20.2	17.7	14.7	24.7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$H_{1/10}$	(cm)	21.7	20.3	19.8	17.8	17.2	17.0	17.1	17.5	18.3	15.1	12.4	19.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		14.9	1.90	$H_{1/3}$	(cm)	17.8	16.1	15.7	14.4	13.9	13.6	13.6	13.5	15.6	13.3	11.3	14.5	0.096
m (cm) $ $ -0.09 -0.05 -0.02 0.01 0.03 0.06 0.03 -0.01 0.05 0.1				$T_{1/3}$	(s)	1.90	1.87	1.85	1.85	1.86	1.78	1.81	1.78	1.85	1.92	2.03	1.77	
				ш	(cm)	-0.09	-0.05	-0.02	0.01	0.03	0.06	0.03	-0.01	0.05	0.18	0.25		

Appendix 1(2). 進行波実験結果(造波水深102.3cm)

18

大村智宏・新井雅之・中山哲嚴

┉: 時間平均水位 (上昇がプラス)

,規則波実験)
(CASE1
越波量実験結果
$\dot{}$
$\overline{}$
\cup
2
Ľ.
p
ē
d
Ą

米昭市イの	自计法	原十世	日里川			し、三川の三十三三十三三十三三十三三十三十三十三十三十三十三十三十三十三十三十三十三	間・時回	日均大会				よ、七、七	物質油	単・恒災単	■ 注意	
H	T	ミー	位置	5	9	<u> </u>	8	6	10	1-2	1 日 日	重重	H	, Ho'		無次元越波流量
(cm)	(s)	堤体か	رcm) کار	10	150	200	300	480	600	火路床	学祝父	(kgf)	(cm)	(cm)	(cm ³ /cm/s)	$q/\sqrt{2gH_{\rm o}^{13}}$
		Н	(cm)	5.34	14.86	17.02	14.14	16.60	18.31	16.27						
16.3 1	LL.	Т	(s)	0.86	1.79	1.79	1.79	1.80	1.80	1.77	0.236	0.16	16.27	17.70	0.18	5.35E-05
		ш	(cm)	3.58	-0.70	-0.28	-0.28	0.03	-0.03	,						
		Н	(cm)	7.45	19.01	21.02	17.92	19.14	21.27	20.50						
20.5 1	.78	Т	(s)	0.90	1.79	1.79	1.79	1.79	1.79	1.78	0.187	0.72	20.50	22.31	0.80	1.72E-04
		Ш	(cm)	6.12	-0.95	-0.39	-0.52	0.01	-0.03							
		Η	(cm)	10.41	19.77	21.90	18.65	20.87	21.82	21.47						
21.5 1	.79	Т	(s)	1.00	1.79	1.79	1.79	1.79	1.79	1.79	0.108	1.31	21.47	23.36	1.46	2.93E-04
		Ш	(cm)	6.83	-0.96	-0.47	-0.72	-0.02	-0.10	·						
		Н	(cm)	10.03	23.90	24.98	21.46	22.43	25.31	23.66						
23.7 1	LL.	Т	(s)	0.87	1.79	1.79	1.79	1.79	1.79	1.77	0.214	3.84	23.66	25.75	4.29	7.42E-04
		Ш	(cm)	8.68	-1.47	-0.82	-0.77	-0.29	-0.23	,						
		Η	(cm)	10.22	21.10	22.65	19.33	20.31	22.84	21.62						
21.6 1	LL.	Τ	(s)	1.09	1.79	1.79	1.79	1.78	1.79	1.77	0.257	1.53	21.62	23.53	1.71	3.38E-04
		ш	(cm)	7.28	-0.93	-0.24	-0.29	-0.09	0.07	,						
		Η	(cm)	11.14	27.08	27.46	25.05	25.64	28.75	25.81						
25.8 1	LL.	Т	(s)	0.85	1.79	1.79	1.79	1.79	1.79	1.77	0.249	7.48	25.81	28.08	8.36	1.27E-03
		ш	(cm)	10.31	-1.47	-0.90	-0.60	-0.37	-0.24							
		Η	(cm)	14.20	26.35	28.22	24.35	24.62	28.44	25.73						
25.7 1	.78	Т	(s)	1.32	1.79	1.79	1.79	1.79	1.79	1.78	0.194	7.57	25.73	28.00	8.46	1.29 E-03
		m	(cm)	10.07	-1.45	-0.69	-0.73	-0.25	-0.16	'						
		Η	(cm)	16.16	31.36	33.22	28.93	29.40	32.69	29.45						
29.5 1	LL.	Г	(s)	1.31	1.79	1.79	1.79	1.79	1.79	1.77	0.262	17.92	29.45	32.05	20.02	2.49E-03
		н	(cm)	12.06	-1.80	-1.00	-0.74	-0.55	-0.21	,						
		Η	(cm)	14.35	32.78	33.51	28.38	28.74	32.07	29.39						
29.4 1	LL.	Т	(s)	1.16	1.79	1.79	1.79	1.79	1.78	1.77	0.255	17.17	29.39	31.98	19.18	2.40E-03
		u	(cm)	11.86	-1.90	-0.87	-0.76	-0.52	-0.21	ı						

急勾配斜面に設置した遊水部付き消波工を有する堤体の機能性・耐波安定性に関する研究

19

	、人財波	計測項目				波高・周	間も時間す	F 均水位				載波水	換算沖派	支波高・赵	该波流量	
$H_{1/3}$	$T_{1/3}$	計測位量	調	5	9	7	8	6	10	1-2	日射率	重重	Η	H_{0}	d	<u> </u>
(cm)	(s)	堤体から((cm)	10	150	200	300	480	600	水路床		(kgf)	(cm)	(cm)	(cm ³ /cm/s)	$q/\sqrt{2gH_{\mathrm{o}}^{13}}$
		$H_{1/3}$ (c	cm)	8.64	12.77	13.27	15.03	14.37	13.71	14.21						
14.2	1.83	$T_{1/3}$ ((s)	2.20	1.94	1.81	1.98	1.93	1.93	1.83	0.285	0.26	14.21	15.53	0.02	5.87E-06
		m (c	cm)	1.22	-0.21	-0.04	0.08	0.04	0.05							
		$H_{1/3}$ (c	cm)	9.00	14.27	14.56	16.19	15.57	15.06	15.63						
15.6	1.88	$T_{1/3}$ ((s)	2.26	1.90	1.81	1.96	1.93	1.96	1.88	0.286	0.81	15.63	17.08	0.05	1.59E-05
		m (c	cm)	1.49	-0.24	-0.06	0.05	0.04	0.07	·						
		$H_{1/3}$ (c	cm)	9.11	13.88	14.40	15.90	15.39	14.85	15.45						
15.5	1.86	$T_{1/3}$ ((s)	2.32	1.94	1.81	1.96	1.93	1.88	1.86	0.283	1.49	15.45	16.89	0.09	2.97E-05
		m (c	cm)	1.48	-0.22	-0.04	0.11	0.05	0.08	,						
		$H_{1/3}$ (c	cm)	9.91	16.46	16.65	17.92	16.92	16.24	16.84						
16.8	1.87	$T_{1/3}$ ((s)	2.22	1.94	1.77	1.91	1.88	1.82	1.87	0.267	2.93	16.84	18.32	0.18	5.16E-05
		m (c	cm)	1.91	-0.28	-0.07	0.00	0.02	0.07	·						
		$H_{1/3}$ (c	cm)	9.12	15.47	16.58	17.43	16.90	16.03	16.43						
16.4	1.81	$T_{1/3}$ ((s)	2.00	1.92	1.78	1.89	1.90	1.83	1.81	0.270	2.08	16.43	17.88	0.13	3.80E-05
		m (c	cm)	1.83	-0.27	-0.04	0.09	0.03	0.07	,						
		$H_{1/3}$ (c	cm)	11.01	17.01	16.39	18.90	17.81	17.27	16.97						
17.0	1.86	$T_{1/3}$ ((s)	2.21	2.02	1.80	2.00	1.98	1.95	1.86	0.276	6.34	16.97	18.47	0.39	1.10E-04
		m (c	cm)	2.11	-0.33	-0.10	0.10	0.06	0.09	ı						
		$H_{1/3}$ (c	cm)	12.34	18.88	16.84	20.06	18.12	18.02	18.00						
18.0	1.97	$T_{1/3}$ ((s)	2.45	2.11	2.01	2.12	2.04	2.11	1.97	0.286	8.20	18.00	19.72	0.50	1.29E-04
		m (c	cm)	2.26	-0.30	-0.13	0.15	0.05	0.11	,						
		$H_{1/3}$ (c	cm)	12.93	18.67	16.59	19.79	18.09	17.69	18.06						
18.1	1.97	$T_{1/3}$ ((s)	2.46	2.12	1.96	2.08	2.04	2.04	1.97	0.283	8.80	18.06	19.78	0.54	1.38E-04
			(mc	2.24	-0.32	-0.12	0.11	0.03	0.08	ı						

Appendix 2(2). 越波量実験結果(CASE1,不規則波実験)

20

大村智宏・新井雅之・中山哲嚴

,規則波実験)
(CASE2
dix 2(3). 越波量実験結果
Appen

		計測	項目			波高・周	期・時間	平均水位				越波水	換算沖波	5波高・ 迫	咙波流 量	自己 生活法 四
Н	Т	三世	位置	5	9	7	8	6	10	1-2	反射率	重重	Н	$H_{o}^{\circ}H$	q	無沃兀瓲波派重
(cm)	(s)	堤体が	ъб(cm)	10	150	200	300	480	600	火路床		(kgf)	(cm)	(cm)	(cm ³ /cm/s)	$q/\sqrt{2gH_{o}^{,3}}$
		Н	(cm)	5.16	17.13	12.26	16.13	17.34	17.05	16.08						
16.1	1.77	T	(s)	1.23	1.80	1.79	1.79	1.79	1.79	1.77	0.207	0.00	16.08	17.50	0.00	0.00E+00
		ш	(cm)	3.34	-0.96	-0.58	-0.18	0.23	-0.01							
		Н	(cm)	8.66	22.71	16.48	21.10	22.91	21.50	21.31						
21.3	1.78	Т	(s)	1.42	1.79	1.78	1.79	1.79	1.79	1.78	0.208	0.34	21.31	23.19	0.38	7.68E-05
		ш	(cm)	6.54	-1.49	-0.89	-0.39	0.13	-0.19							
		Η	(cm)	6.26	22.04	17.16	19.70	21.01	20.75	19.97						
20.0	1.79	T	(s)	0.95	1.78	1.78	1.79	1.79	1.80	1.79	0.114	0.23	19.97	21.73	0.26	5.73E-05
		Ш	(cm)	5.54	-1.45	-0.70	-0.49	0.23	-0.05	ı						
		Η	(cm)	8.40	26.08	18.07	22.84	24.78	23.14	22.97						
23.0	1.80	Т	(s)	1.04	1.79	1.80	1.79	1.80	1.79	1.80	0.155	0.51	22.97	24.99	0.57	1.03E-04
		ш	(cm)	7.54	-1.53	-0.46	-0.52	0.22	-0.19	ı						
		Η	(cm)	7.39	25.44	19.20	21.66	22.86	22.33	22.17						
22.2	1.81	T	(s)	0.98	1.79	1.79	1.80	1.79	1.79	1.81	0.146	0.34	22.17	24.12	0.38	7.24E-05
		ш	(cm)	7.16	-1.43	-0.70	-0.47	0.26	0.00	,						
		Η	(cm)	9.40	30.89	21.31	25.56	27.61	25.96	25.50						
25.5	1.78	Т	(s)	1.05	1.79	1.79	1.79	1.78	1.78	1.78	0.137	1.99	25.50	27.75	2.22	3.44E-04
		ш	(cm)	9.58	-2.18	-1.17	-0.63	0.27	-0.43	ı						
		Н	(cm)	7.38	31.57	23.44	26.10	27.38	26.86	25.77						
25.8	1.81	Т	(s)	0.79	1.79	1.79	1.79	1.79	1.79	1.81	0.164	1.69	25.77	28.04	1.89	2.87E-04
		ш	(cm)	9.44	-1.90	-1.05	-0.77	0.23	-0.24	1						
		Η	(cm)	9.85	34.05	26.53	31.21	32.21	30.70	29.51						
29.5	1.77	Т	(s)	0.94	1.79	1.79	1.79	1.79	1.78	1.77	0.270	9.99	29.51	32.11	11.16	1.39E-03
		Ш	(cm)	12.11	-2.79	-1.65	-0.26	-0.40	-0.36	ı						
		Н	(cm)	10.05	34.63	28.62	30.47	31.59	30.50	29.51						
29.5	1.78	Т	(s)	1.00	1.79	1.79	1.79	1.79	1.79	1.78	0.149	9.32	29.51	32.11	10.41	1.29E-03
		В	(cm)	11.31	-2.97	-1.36	-0.36	-0.66	-0.18	·						

急勾配斜面に設置した遊水部付き消波工を有する堤体の機能性・耐波安定性に関する研究

21

▲波流量 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		$(\mathrm{cm}^3/\mathrm{cm/s})$ $q/\sqrt{2gH_0^{13}}$		0.00 0.00E+00			0.01 2.23E-06			0.02 4.99E-06			0.03 9.70E-06			0.07 1.91E-05			0.07 2.10E-05			0.14 3.84E-05			0.14 3.66E-05
中波波高・走	H_{o}) (cm)) 16.38			7 16.69			2 16.85			2 18.30			1 18.18			0 18.50			5 19.22			5 19.67
換算〉	Η	(cm)		14.99			15.27			15.42			16.82			16.7]			17.00			17.55			17.96
越波水	重重	(kgf)		0.00			0.11			0.25			0.55			1.07			1.21			2.34			2.31
	反射率			0.319			0.308			0.309			0.278			0.281			0.294			0.318			0.319
	1-2	水路床	14.99	1.82	ı	15.27	1.86	ı	15.42	1.85	ı	16.82	1.84	ı	16.71	1.86		17.00	1.92	ı	17.55	1.94		17.96	1.97
	10	009	13.81	1.97	0.06	15.06	1.93	0.11	15.40	1.96	0.09	16.25	1.85	0.08	16.46	1.85	0.08	17.52	1.97	0.10	18.27	2.03	0.10	18.44	2.04
平均水位	6	480	14.21	1.92	0.05	15.91	1.93	10.22	16.12	1.94	0.05	16.97	1.90	0.08	17.30	1.91	0.04	18.02	1.98	0.11	18.44	1.99	0.08	18.47	2.00
期・時間 ³	8	300	15.79	1.99	0.08	16.90	2.00	0.13	17.10	1.99	0.09	18.68	1.93	0.07	18.90	1.94	0.06	20.01	2.01	0.11	20.80	2.09	0.12	20.68	2.09
波高・周	7	200	11.05	1.75	0.12	11.95	1.75	0.04	12.22	1.76	-0.16	14.31	1.73	-0.16	14.45	1.75	-0.19	13.97	1.80	-0.15	14.25	1.89	-0.26	14.23	1.91
	9	150	14.13	2.05	-0.26	15.51	2.01	-0.26	15.68	2.05	-0.29	17.51	1.95	-0.35	17.78	2.01	-0.39	18.25	2.06	-0.36	19.40	2.17	-0.39	19.08	2.13
	5	10	6.64	2.14	1.14	6.88	2.15	1.47	7.00	2.28	1.39	7.88	2.19	1.79	8.25	2.24	1.79	8.76	2.54	1.98	9.38	2.57	2.10	9.58	2.51
項目	位置	ら(cm)	(cm)	(s)	(cm)	(cm)	(s)																		
計測	言	堤体か	$H_{1/3}$	$T_{1/3}$	Ш	$H_{1/3}$	$T_{1/3}$	m	$H_{1/3}$	$T_{1/3}$															
の入射波	$T_{1/3}$	(s)		1.82			1.86			1.85			1.84			1.86			1.92			1.94			1.97
火路床で($H_{1/3}$	(cm)		15.0			15.3			15.4			16.8			16.7			17.0			17.6			18.0

Appendix 2(4). 越波量実験結果(CASE2,不規則波実験)

22

大村智宏・新井雅之・中山哲嚴

				н н		堤体位	伝達	波高 $H_t($	cm)	波高伝		H_t/H_i	相対天	波高伝達	率 $K_t = $	E_t/E_i
火路床での)	く射波	反射率	K_s	0 11	波高比	置波高	堤体後	後面壁から	(cm)	堤体後	き面壁から	(cm)	调	堤体後	画壁から	(cm)
				(cm)		(cm)	62.5	162.5	362.5	62.5	162.5	362.5	R/H_i	62.5	162.5	362.5
H (cm)	16.14	0300	0.010	17 50	LC 1	05.00	0.09	0.10	0.13	0.004	0.005	0.006				
<i>T</i> (s)	1.77	0.2.0	012.0	01	1.2.1	00.02	1.67	1.36	0.91	,	'	'	ı	ı		
H (cm)	20.46					12 2J	0.24	0.16	0.22	0.010	0.007	0.009	200	0.016	0.010	0.010
<i>T</i> (s)	1.77	0.242	0.010	67.77	1 1 1	70.07	0.97	0.98	1.10		'		0.0/	010.0	0.012	0.012
H (cm)	20.47		016.0	77 2 U	1.14	72 24	0.21	0.11	0.05	0.009	0.005	0.002	0 07	0000	0.010	0000
<i>T</i> (s)	1.77	0.24/		00.77		+0.02	0.72	0.65	0.45	ı	'	·	0.07	070.0	0.010	0.000
H (cm)	21.54	0 162		73 16			0.25	0.22	0.23							
<i>T</i> (s)	1.78	C01.0	0.010	01.07		ı	0.43	0.59	0.83				ı			
H (cm)	21.43	0.716	012.0	12 21			0.35	0.27	0.12	ı	ı					
<i>T</i> (s)	1.77	0.710		+0.07		ı	0.48	0.52	0.67	·	'	,	ı	ı		ı
H (cm)	26.04	0 100		72 27		77 20	0.76	0.48	0.39	0.034	0.021	0.017	0.01	0.051	0.020	0.022
<i>T</i> (s)	1.79	0.102	0.010	10.02	98.0	60.77	0.45	0.46	0.53	,	'	'	1.71	100.0	000.0	C7N.N
H (cm)	25.65	0.750	012.0	10 70	0.00	20 06	0.61	0.48	0.26	0.028	0.022	0.012	<i>C</i> 0 U	0.038	8000	0.017
<i>T</i> (s)	1.77	0.7.0		+6.17		00.22	0.34	0.49	0.59		,	,	76.0	0000	070.0	/10.0
H (cm)	29.68	0.751		27 22		73 15	1.34	0.87	0.70	0.057	0.037	0.030	79 O	0.081	0.040	0.044
<i>T</i> (s)	1.77	1.77.0	0.018	<i>CC.7C</i>	0.70	CH.C7	0.41	0.49	0.59			-	10.0	100.0		++0.0
H (cm)	29.66	0 107	012.0	27 21	61.0	72 12	1.18	0.68	0.57	0.050	0.029	0.024	0.87	0.087	0.041	0.037
T (s)	1.78	161.0		10.70			0.42	0.43	0.57				10.0	700.0	110.0	+00.0

Appendix 3(1). 伝達波実験結果(CASE1,規則波実験)

 	$\propto K_t = \sqrt{E_t/E_i}$	面壁から (cm) 162.5 362.5			1				670.0 670.0			0.024 0.028	070.0 170.0			0000 9000	0.040			0.027 0.030	0.000 1.2000							0 046 0 041	110.0 010.0				0 0 16 0 0 28				
	波高伝達	堤体後 62.5						0.020	000.0			0.075	0.20.0			0.020	0000			0.037	7000			1				0 047					L10 0				
	相対天				·			1 07	1.0.1			1 06	00.1			1 0.4	1.01			1 04				1	I			0.94					0.05				
11/	$H_{1/3,t}/H_i$, (cm) 362.5							0.019				0.015				0.015				0.018								0.026								
4	≣率 K t=H	後面壁から 162.5							0.013				0.017				0.013				0.015								0.026								
	波高伝道	堤体後 62.5							0.015				0.017				0.020				0.020				'				0.038								
	_{,t} (cm)	5 (cm) 362.5	0.52	0.40	0.30	3.41	0.67	0.47	0.36	4.11	0.50	0.41	0.29	3.15	0.55	0.42	0.30	2.57	0.64	0.48	0.36	3.03	0.83	0.55	0.41	3.52	0.83	0.70	0.57	4.26	0.78	0 69	~~~~				
11	波高 H _{1/3}	後面壁から 162.5	0.50	0.35	0.27	6.90	0.50	0.36	0.25	4.70	0.53	0.44	0.33	4.82	0.50	0.33	0.25	3.28	0.53	0.37	0.30	4.74	0.74	0.57	0.39	3.72	1.12	0.75	0.56	3.94	1.03	0 73					
	伝達ジ	堤谷(62.5	0.44	0.38	0.29	5.66	0.83	0.46	0.28	4.81	0.74	0.48	0.33	4.75	1.15	0.58	0.40	3.94	1.37	0.61	0.39	3.04	1.67	0.90	0.57	3.23	2.48	1.17	0.82	2.67	2.09	1 23	1.10				
	堤体位	置波高 (cm)						19 07	10.71			10.00	(0.01			1057	10.61			19 61	10.71				I			21 53	CC: 17				21 25				
		波高比			ı						1.23								1.17				I				-				1.20						
	H_{c}	(cm)		15 20	67.01			16.85				16.85				16 96	00.01			18 20	10.201			18 24	17.01			18 22				19 65	0.11				10 /0
		K_s		0100	0.919					0.015	C16.0							0.010	C1C.0					0 919						0.012	C16.0						
		反射率		0300	007.0			0200	0.770			0270	0/7.0			0.756	0.770			0 2 5 3	0.4.0			0.266				0.276	0.110				V L C C				
		入射波	23.97	18.32	14.05	1.84	25.69	20.35	15.42	1.84	26.06	20.32	15.52	1.82	24.19	21.16	16.73	1.81	24.73	21.10	16.76	1.83	27.07	22.31	16.74	1.87	29.63	23.52	17.94	1.97	29.92	73 50	00.07				
		啓床での	(cm)	(cm)	(cm)	3 (S)	ax (cm)	10 (cm)	³ (cm)	3 (S)	ax (cm)	10 (cm)	3 (cm)	3 (S)	_{ix} (cm)	₀ (cm)	³ (cm)	3 (S)	ax (cm)	10 (cm)	3 (cm)	3 (S)	_{ix} (cm)	(m) (cm)	³ (cm)	3 (S)	ax (cm)	10 (cm)	³ (cm)	3 (s)	ax (cm)	(uu) ,	10 (111)				

Appendix 3(2). 伝達波実験結果(CASE1,不規則波実験)

24

大村智宏・新井雅之・中山哲嚴

语	火路床での	っ人射波諸元		H		11	星体位				波圧硝	自度 P(N	(cm^2)	4		海力上		兼	次元波日	王強度 p/	WH HM		無次元
新	返過	周期	X	S (*	rщ]] +	「「」」			計測	立置 <i>z</i> (c	m), 直立	堤底面2	0=0		(mo/N)		計測位	置 z (cm), 直立堤	底面 z =(「均波圧
Ë	(cm)	(s)		<u>ز</u>) (iii	3	(cm)	-	2.0	9.0	17.0	21.0	25.0	33.0	41.5		2.0	9.0	17.0 2	1.0 25	.0 33.(41.5	強度
Ŀ	I _{max} 26.14	1 T _{max} 2.2	20				İ	$p_{\text{max}} 0$	136	0.130	0.140	0.130	0.161	0.083	0.047	4.98	0.72	0.69	0.74 0	.0 69.0	85 0.44	0.25	0.51
ж Ч	r _{1/10} 20.52	$T_{1/10} = 1.3$	32	17.	08	1	9.22	$p_{1/10} 0$	105	0.098	0.106	0.096	0.087	0.043	0.017	3.29	0.56	0.52	0.56 0	.51 0.4	46 0.23	0.09	0.33
規 /	$H_{1/3}$ 15.63	$T_{1/3}$ 1.4	35 0.0	5	-	23	-	$p_{1/3} = 0$	079	0.072	0.079	0.072	0.053	0.018	0.009	2.25	0.42	0.38	0.42 0	.38 0.2	28 0.09	0.05	0.23
副語	(_{max} 25.19) T _{max} 1.5	86	5	-	<u>)</u>	,	$p_{\text{max}} 0$.147	0.132	0.151	0.153	0.234	0.066	0.033	5.44	0.78	0.70	0.80 0	.81 1.2	24 0.35	0.18	0.55
<u>惑</u> ()	r _{1/10} 20.38	$T_{1/10} 1.$	78	17.	06	1	9.20	$p_{1/10} 0$	1097	0.093	0.103	0.097	0.105	0.034	0.011	3.20	0.52	0.49	0.55 0	.51 0.5	56 0.18	0.06	0.33
作!	H _{1/3} 15.61	$T_{1/3}$ 1.3	33				-	$p_{1/3} 0$.072	0.069	0.078	0.071	0.057	0.014	0.005	2.15	0.38	0.37	0.41 0	.38 0.3	30 0.07	0.03	0.22
用 万	I _{max} 26.31	$T_{\rm max}$ 1.0	50				ļ	$p_{\text{max}} 0$	174	0.174	0.219	0.250	0.759	0.273	0.285	12.88	0.89	0.90	1.13 1	.29 3.9	91 1.41	1.47	1.27
波力	71/10 21.61	$T_{1/10} = 1.3$	32	18.	40	-	9.78	$p_{1/10} 0$.126	0.119	0.133	0.122	0.157	0.140	0.051	5.23	0.65	0.61	0.68 0	.63 0.8	81 0.72	0.26	0.52
~ 田(H _{1/3} 16.91	$T_{1/3} = 1.8$	32 0.0	01	-	1		$p_{1/3} = 0$.094	0.084	0.093	0.086	0.080	0.049	0.017	3.02	0.49	0.43	0.48 0	.44 0.4	41 0.25	0.09	0.30
	(_{max} 25.41	$T_{\rm max}$ 2.0	14 0.3	61	-	/ T.	ļ	$p_{\text{max}} 0$.187	0.183	0.201	0.183	0.218	0.260	0.043	8.01	0.97	0.94	1.04 0	.95 1.1	13 1.35	0.22	0.80
田 日 日 日	r _{1/10} 21.57	$T_{1/10} = 1.3$	36	18.	34	1	9.71	$p_{1/10} 0$.123	0.119	0.132	0.120	0.114	0.082	0.018	4.30	0.63	0.62	0.68 0	.62 0.5	59 0.42	0.10	0.43
/ 世	$I_{1/3}$ 16.85	$T_{1/3}$ 1.3	35		_		-	$p_{1/3} = 0$.088	0.081	0.090	0.082	0.066	0.029	0.008	2.64	0.46	0.42	0.47 0	.43 0.3	34 0.15	0.04	0.26
を 上	I _{max} 28.89	T T max 2.2	28				, i	$p_{\text{max}} 0$.259	0.259	0.325	0.353	0.561	0.455	1.003	19.12	1.21	1.21	1.52 1	.65 2.6	52 2.13	4.68	1.72
考考	71/10 23.74	T T 1/10 2.	11	19.	92	0	1.83	$p_{1/10} 0$.147	0.143	0.166	0.165	0.197	0.138	0.111	6.44	0.69	0.67	0.78 0	0.0	92 0.65	0.52	0.58
~ 風‡	H _{1/3} 18.19	$T_{1/3}$ 1.5	66	1 2	-	00	-	$p_{1/3} 0$.102	0.096	0.108	0.103	0.097	0.051	0.036	3.53	0.48	0.45	0.51 0	.48 0.4	45 0.24	0.17	0.32
ا ر م	I _{max} 29.28	T T max 2	32 0.3		-	07.	į	$p_{\text{max}} 0$.253	0.229	0.319	0.282	0.311	0.645	0.324	15.04	1.19	1.08	1.51 1	.33 1.4	47 3.05	1.53	1.36
Ú P	r _{1/10} 23.60	T 1/10 2.0	70	19.	72	0	21.60	$p_{1/10} 0$.144	0.135	0.157	0.160	0.146	0.182	0.049	6.02	0.68	0.64	0.74 0	.75 0.6	59 0.86	0.23	0.55
$\frac{1}{2}$	$H_{1/3}$ 18.00	$T_{1/3}$ 1.5	Le				-	$p_{1/3} 0$	093	0.089	0.102	0.099	0.079	0.062	0.017	3.27	0.44	0.42	0.48 0	.47 0.3	37 0.29	0.08	0.30
F	I _{max} 26.14	$T_{\text{max}} 2.2$	20				ļ	$p_{\text{max}} 0$	130	0.130	0.136	0.120	0.089	0.039	0.000	3.85	0.69	0.69 (0.72 0	.63 0.4	47 0.21	0.00	0.39
F	r _{1/10} 20.52	$T_{1/10} = 1.3$	32	17.	08	1	9.22	$p_{1/10} 0$	060.	0.089	0.098	0.088	0.067	0.015	0.002	2.63	0.48	0.47	0.52 0	.46 0.3	35 0.08	0.01	0.27
× ۲	$H_{1/3}$ 15.63	$T_{1/3}$ 1.3	35 A 0	15	-	23	-	$p_{1/3} 0$.072	0.068	0.076	0.069	0.044	0.009	0.003	1.99	0.38	0.36	0.40 0	.37 0.2	23 0.05	0.01	0.20
現石	(_{max} 25.19	$T_{\text{max}} 1.6$	86		-	C ⁷ .	ļ	$p_{\text{max}} 0$	129	0.121	0.140	0.129	0.180	0.000	0.000	4.05	0.68	0.64	0.74 0	.68 0.9	96 0.00	00.00	0.41
割	r _{1/10} 20.38	3 T 1/10 1.	78	17.	90	1	9.20	$p_{1/10} 0$.088	0.085	0.096	0.088	0.075	0.014	0.001	2.62	0.47	0.45	0.51 0	.47 0.4	40 0.07	0.01	0.27
- <u>-</u> × (H _{1/3} 15.61	$T_{1/3} = 1.3$	33					$p_{1/3} 0$	068	0.067	0.076	0.069	0.047	0.005	0.001	1.94	0.36	0.36	0.40 0	.37 0.2	25 0.03	0.00	0.20
作匠	f _{max} 26.31	$T_{\rm max}$ 1.0	50				ļ	$p_{\text{max}} 0$	139	0.135	0.158	0.217	0.759	0.042	0.000	8.49	0.72	0.70	0.81 1	.12 3.9	91 0.21	0.00	0.84
田	r _{1/10} 21.61	$T_{1/10} = 1.3$	32	18.	40	1	9.78	$p_{1/10} 0$	103	0.100	0.116	0.1111	0.123	0.083	0.001	3.88	0.53	0.52	0.60 0	.57 0.6	53 0.43	0.01	0.38
透す	H _{1/3} 16.91	$T_{1/3}$ 1.3	82 <u>n</u> o	10	-	17	-	$p_{1/3} 0$.081	0.077	0.087	0.081	0.071	0.028	0.000	2.54	0.42	0.40	0.45 0	.42 0.3	37 0.15	0.00	0.25
Ξ Ξ	(_{max} 25.41	$T_{\rm max}$ 2.0	14 0.3		-	/ 1 .	į	$p_{\text{max}} 0$.162	0.166	0.195	0.183	0.159	0.260	0.000	7.13	0.84	0.86	1.01 0	.95 0.8	82 1.35	00.00	0.71
	r _{1/10} 21.57	7 T $_{1/10}$ 1.3	36	18.	34	1	9.71	$p_{1/10} 0$.113	0.111	0.126	0.115	0.087	0.067	0.001	3.75	0.59	0.57	0.65 0	.59 0.4	45 0.35	0.01	0.37
時 /	$H_{1/3}$ 16.85	$T_{1/3}$ 1.3	35	_	_		-	$p_{1/3} 0$.082	0.079	0.089	0.081	0.055	0.022	0.001	2.40	0.42	0.41	0.46 0	.42 0.2	28 0.11	0.00	0.24
性を	I _{max} 28.89	$T_{\text{max}} 2$	28				ļ	$p_{\max} 0$.240	0.249	0.325	0.273	0.247	0.050	0.003	8.14	1.12	1.16	1.52 1	.28 1.1	15 0.23	0.02	0.73
Ю Ч	1/10 23.74	$T_{1/10}$ 2.	[]	19.	92	r v i	21.83 1	$p_{1/10} 0$.123	0.121	0.139	0.123	0.112	0.071	0.081	4.59	0.57	0.56	0.65 0	.58 0.5	52 0.33	0.38	0.41
	$\frac{1}{1/3}$ 18.19	$T_{1/3}$ 1.2	90 0.9	13	_	20	-	$p_{1/3} = 0$.094	0.092	0.103	0.093	0.070	0.027	0.025	2.97	0.44	0.43	0.48 0	.43 0.3	33 0.13	0.12	0.27
\sim	(_{max} 29.28	$T_{\text{max}} 2$	32		•	, !	İ	$p_{\text{max}} 0$.210	0.191	0.221	0.069	0.226	0.480	0.010	9.56	0.99	0.90	1.04 0	.32 1.(07 2.27	0.05	0.87
L.	/ _{1/10} 23.60	$T_{1/10}$ 2.(17	19.	72	2	21.60 <i>j</i>	$p_{1/10} 0$.128	0.117	0.133	0.107	0.100	0.133	0.004	4.53	0.61	0.55	0.63 0	.51 0.4	47 0.63	0.02	0.41
7	$\frac{1}{1/3}$ 18.00	$T_{1/3}$ 1.2	16					$P_{1/3} = 0$.088	0.086	0.096	0.083	0.061	0.043	0.002	2.77	0.42	0.41	0.45 0	.39 0.2	29 0.2(0.01	0.25
	H 16.30	T 1.	77 0.9	18 17.	76	27	20.70	<i>p</i> 0	.091	060.0	0.102	0.104	0.089	0.082	0.004	3.44	0.45	0.44	0.50 0	.51 0.4	44 0.4	0.02	0.33
	<u>H</u> 16.32	T 1.	200 LL	17.	78	1	20.73	<i>p</i> 0	060.	0.085	0.094	0.094	0.077	0.035	0.001	2.83	0.44	0.42	0.46 0	.46 0.3	38 0.17	0.01	0.27
ļ	<u>H 19.52</u>	T 1.	77 0.9	18 21.	26 1	14	2.25	<i>p</i> 0	.126	0.123	0.141	0.140	0.113	0.138	0.010	4.89	0.58	0.56	0.65 0	.64 0.5	52 0.63	0.04	0.43
恐司	<u>H 20.01</u>	T = 1.	76 0	21.	80	5	22.81	p = 0	.141	0.124	0.137	0.135	0.132	0.114	0.016	4.88	0.63	0.55 (0.61 0	.60 0.5	59 0.51	0.07	0.42
 R	<u>H 26.27</u>	T 1.	$\frac{76}{10.9}$	18 28.	62 0	86 2	2.59	p = 0	191	0.183	0.218	0.220	0.222	0.266	0.043	8.37	0.86	0.83	0.98 0	.99 1.(00 1.20	0.19	0.73
Ę	<u>H</u> 26.35	T 1.	76 0	28.	, <u> </u>	2	22.66	p = 0	.196	0.170	0.197	0.199	0.168	0.266	0.125	8.18	0.88	0.77	0.89 0	.89 0.7	76 1.20	0.56	0.71
	H 29.78	T 1.	$\frac{76}{0.9}$	18 32.	44	79 2	13.53	p = 0	.219	0.181	0.204	0.207	0.201	0.252	0.266	9.30	0.95	0.78	0.88 0	3.0 06.0	87 1.09	1.15	0.78
	H 29.92	T 1.	76 0	32.	59 Č	12	3.64	p = 0	.214	0.179	0.197	0.191	0.171	0.254	0.105	8.14	0.92	0.77	0.85 0	.83 0.7	74 1.09	0.45	0.68

Appendix 4(1). 波圧実験結果(CASE1,直立堤設置水深22.3cm)

25

,直立堤設置水深21.0cm)
(CASE1
. 波圧実験結果 (
2)
¥
Appendix

無次元	新聞に	強度	0.59	0.20	0.59	0.28	0.61	0.38	0.25	1.33	0.52	0.29	1.43	0.56	0.31	1.13	0.46	0.27	0.33	0.23	0.18	0.34	0.23	0.17	0.48	0.31	0.22	0.87	0.41	0.25	0.72	0.37	0.24	0.68	0.36	0.23	0.21	0.20	0.29	0.27	0.78	0.60	0.92	0.79
		41.5	0.03	0.03	0.50	0.07	0.04	0.05	0.03	1.12	0.20	0.08	2.98	0.41	0.14	0.58	0.11	0.05	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.17	0.03	0.01	0.05	0.14	0.05	0.00	0.00	0.00	0.03	0.03	0.11	0.07	1.26	0.91	0.78	0.62
	0=z	33.0	0.88	0.05	1.11	0.22	0.00	0.34	0.12	4.24	0.89	0.29	1.81	0.57	0.21	1.78	0.35	0.13	0.06	0.01	0.01	0.11	0.08	0.03	0.73	0.22	0.09	4.24	0.75	0.23	1.81	0.24	0.10	0.19	0.10	0.03	0.09	0.03	0.13	0.13	1.40	0.79	2.17	1.54
$H_{W/a}$	Z堤底面	25.0	0.43	0.18	0.65	0.29	0.95	0.57	0.30	1.19	0.60	0.31	2.49	0.96	0.44	1.49	0.70	0.35	0.40	0.23	0.15	0.39	0.22	0.14	0.53	0.42	0.23	0.07	0.42	0.24	0.57	0.61	0.32	1.01	0.51	0.27	0.22	0.20	0.41	0.32	0.81	0.62	0.89	0.84
正确度	m), 直式	21.0	2.03 0.50	0.41	0.64	0.46	0 04	0.60	0.43	0.91	0.66	0.45	1.62	0.81	0.50	1.53	0.79	0.49	0.62	0.55	0.38	0.63	0.42	0.34	0.69	0.54	0.39	0.32	0.53	0.41	0.78	0.67	0.45	0.93	0.57	0.42	0.38	0.37	0.44	0.45	0.79	0.70	0.92	0.86
垂次 元 近	<u>z置z(c</u>)	17.0	0.70	0.40	0.71	0.50	0 83	0.62	0.45	1.06	0.70	0.48	1.32	0.74	0.49	1.87	0.78	0.49	0.68	0.46	0.37	0.68	0.46	0.38	0.76	0.56	0.42	0.43	0.59	0.45	0.80	0.59	0.45	1.87	0.75	0.49	0.41	0.41	0.49	0.50	0.79	0.74	0.95	0.89
	計測位	9.0	0.63	0.35	0.64	0.45	0.75	0.56	0.40	0.88	0.61	0.42	1.07	0.68	0.45	1.10	0.64	0.42	0.61	0.42	0.34	0.61	0.41	0.34	0.64	0.49	0.37	0.40	0.51	0.39	0.84	0.52	0.40	0.96	0.61	0.42	0.37	0.36	0.45	0.46	0.68	0.66	0.83	0.79
		2.0	0.63	0.39	0.66	0.46	0.73	0.59	0.46	0.88	0.64	0.46	1.13	0.70	0.48	1.16	0.67	0.45	0.60	0.43	0.35	0.62	0.41	0.33	0.63	0.49	0.40	0.40	0.52	0.41	0.85	0.51	0.40	1.01	0.65	0.43	0.39	0.35	0.51	0.47	0.78	0.74	0.88	0.92
	波力 F	N/cm)	5.59 2.70	1.92	5.69	2.70	612	3.86	2.49	13.35	5.18	2.89	15.12	5.96	3.25	12.01	4.92	2.86	3.16	2.19	1.69	3.27	2.16	1.67	4.78	3.13	2.16	8.73	4.08	2.48	7.64	3.94	2.57	7.23	3.85	2.48	2.26	2.08	3.59	3.09	8.86	6.91	11.04	9.35
		41.5	006	.005	.092	014	700.0	600.0	0.006	0.215	0.039	0.015	.608	0.083	0.028	0.118	0.023	0.010	000.0	0.001	0.001	000.0	001	0.001	0.002	0.001	0.001	0.032	0.005	0.002	0.010	.029	600.0	000.0	000.0	0.001	000.0	007	0.026	0.014	0.277	.201	.181	.143
	0	3.0	160 (010	205 (041 (163	0066	023 (816 (172 (055 (369 (116 (042 (365 (072 (027 (011 (002 (002 (020 (014 (005 (141 (041 (017 (816 (145 (044 (369 (049 (020 (039 (020 (007 (018 (006	030 (029 (309 (175 (502 (353 (
(2)	底面 z =	.0 3	080 0. 154 0.	0. 10 134 0. 0	19 0.	53 0.	83 0	10 0.	157 0.	28 0.	16 0.	59 0.	07 0.	96 0.	89 0.	04 0.	44 0.	0.72	0.72 0.	0.1	0.0	0.72 0.	0.0	0.27	02 0.	80 0.	0.44	0.14 0.	81 0.	0.0	17 0.	25 0.	165 0 .	0.000	05 0.	55 0.	0.45	0.0	.0 66	0.00	77 0.	36 0.	05 0.	93 0.
(N/cm	直立堤」	0 25	72 0.0	74 0.0	8 0.1	36 0.0	0 0.0 1 0 1	5 0.1	32 0.0	74 0.2	27 0.1	37 0.0	30 0.5	55 0.1	0.0	4 0.3	52 0.1	0.0 0.0	3 0.0	0.0 0.0	70 0.0	5 0.0	78 0.0	53 0.0	32 0.1	0.0	76 0.0	52 0.0	0.0	78 0.0	9 0.1	36 0.1	0.0	0.2	8 0.1	37 0.0	78 0.0	76 0.0	0.0	0.0	4 0.1	56 0.1	2 0.2	7 0.1
工術度 D	(cm),	21.	8 0.37	0.0	0.11	0.080	0.00	0.11	20.08	3 0.17	t 0.12	2 0.08	0.33	2 0.16	0.10	3 0.31	0.16	0.10	5 0.11	5 0.10	0.07	5 0.11	5 0.07	0.06	7 0.13	3 0.10	0.07	3 0.06	t 0.10	5 0.07	3 0.15	0.13	0.05	3 0.15	t 0.11	30.0	1 0.07	3 0.07	7 0.10	0.05	0.17	0.15	0.21	1 0.15
三代	則位置 2	17.0	0.128	0.072	0.13]	0.092	0.070	0.119	0.087	0.203	0.13^{2}	0.092	0.269	0.152	0.101	0.383	0.16(0.101	0.125	0.085	0.069	0.125	0.085	0.069	0.147	0.108	0.081	0.083	0.11_{4}	0.086	0.163	0.121	0.091	0.383	0.154	0.10]	0.084	0.083	0.117	0.108	0.173	0.163	0.22(0.20
	計	9.0	0.115	0.065	0.119	0.083	0 143	0.107	0.078	0.169	0.117	0.082	0.218	0.138	0.091	0.225	0.131	0.087	0.111	0.077	0.062	0.112	0.076	0.062	0.122	0.095	0.072	0.077	0.098	0.075	0.171	0.106	0.081	0.196	0.125	0.086	0.076	0.074	0.109	0.100	0.150	0.145	0.191	0.180
		2.0	0.116	0.072	0.121	0.085	0.141	0.114	0.089	0.169	0.123	0.089	0.231	0.142	0.098	0.238	0.138	0.092	0.109	0.078	0.064	0.114	0.075	0.061	0.121	0.095	0.077	0.076	0.099	0.079	0.172	0.104	0.082	0.208	0.132	0.089	0.078	0.072	0.122	0.102	0.171	0.164	0.203	0.211
			<i>p</i> max	$p_{1/3}$	$p_{\rm max}$	$p_{1/10}$	P 1/3	$p_{1/10}$	$p_{1/3}$	$p_{\rm max}$	$p_{1/10}$	$p_{1/3}$	$p_{\rm max}$	$P_{1/10}$	$p_{1/3}$	$p_{\rm max}$	$P_{1/10}$	$p_{1/3}$	$p_{\rm max}$	$p_{1/10}$	$p_{1/3}$	$p_{\rm max}$	$P_{1/10}$	$p_{1/3}$	p_{\max}	$P_{1/10}$	$p_{1/3}$	p_{\max}	$P_{1/10}$	$p_{1/3}$	$p_{\rm max}$	$P_{1/10}$	$p_{1/3}$	p_{max}	$p_{1/10}$	$p_{1/3}$	р	р	р	d	р	d	р	d
提休价	置波高	(cm)	18.65	CO.01		18.76		19.63			19.62			20.78			20.89			18.65			18.76			19.63			19.62			20.78			20.89		20.74	20.82	24.51	22.25	22.41	22.55	23.59	23.36
	通道	2		, ,	- c7.1				1 -	1.1/						1.20					1 22	C2.1					1 17	1.1/					1 20	21			1 77	1.4/	1 14	F1.1	0.86		0.79	
-	° H	(cm)	16 57			16.67		18.26			18.25			18.97			19.07			16.57			16.67			18.26			18.25			18.97			19.07		17.79	17.85	23.42	21.26	28.39	28.56	32.53	32.21
	Ks			210	- CIV.(- 1.7.1					010	C14.(2100	_ دוע.ل					010	- 7 YIY					1 913				1 810 0	01270	1 810 0	017.0	1918	212	1918	
L H		(1.82	1.79	1.82	1.81	1.75	1.87	1.83	1.46	1.78	1.82	2.32	2.04	1.93	2.34	2.08	1.93	1.82	1.80	1.79	1.82	1.81	1.79	1.56	1.87	1.83	1.46	1.78	1.82	2.32	2.04	1.93	2.34	2.08	1.93	1.77	1.77	1.79	1.77	1.77	1.77	1.76	1.75
/ 射池誌	周期	(s	T_{\max}	$T_{1/3}^{-1/10}$	$T_{\rm max}$	$T_{T/10}$	$T^{-1/3}$	$T_{1/10}$	$T_{1/3}$	$T_{\rm max}$	$T_{\ 1/10}$	$T_{1/3}$	$T_{\rm max}$.	$T_{1/10}$.	$T_{1/3}$	$T_{\rm max}$.	$T_{1/10}$:	$T_{1/3}$	$T_{\rm max}$	$T_{\ 1/10}$	$T_{1/3}$	$T_{\rm max}$	$T_{1/10}$	$T_{1/3}$	$T_{\rm max}$	$T_{1/10}$	$T_{1/3}$	$T_{\rm max}$	$T_{1/10}$	$T_{1/3}$	$T_{\rm max}$.	$T_{1/10}$.	$T_{1/3}$	T_{max} .	$T_{1/10}$.	$T_{1/3}$	Т	Т	Т	Т	Т	Т	Т	Τ
1 (() ()) ()) ()))))))))	、 、 作	(m)	23.24	15.16	23.42	19.59	73.96	20.55	16.78	24.94	20.73	16.77	26.92	22.55	17.32	26.97	22.65	17.41	23.24	19.39	15.16	23.42	19.59	15.25	23.96	20.55	16.78	24.94	20.73	16.77	26.92	22.55	17.32	26.97	22.65	17.41	16.33	16.39	21.50	19.52	26.06	26.22	29.86	29.57
大路區	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(ci	H_{max}	$H_{1/3}$	$H_{\rm max}$.	$H_{H^{1/10}}$	H 1/3	$H_{1/10}$	$H_{1/3}$	H_{max}	$H_{1/10}$.	$H_{1/3}$	H _{max} .	$H_{1/10}$.	$H_{1/3}$	H_{max}	$H_{1/10}$.	$H_{1/3}$	H_{max}	$H_{1/10}$	$H_{1/3}$	$H_{\rm max}$	$H_{1/10}$	$H_{1/3}$	H_{max}	$H_{1/10}$.	$H_{1/3}$	H_{max}	$H_{1/10}$.	$H_{1/3}$	H _{max} .	$H_{1/10}$.	$H_{1/3}$	H_{max}	$H_{1/10}$.	$H_{1/3}$	Н	Н	H	Н	Н	H	H	Η
	波 :	種	k	小現	副造	< (1	É⊞	E浜	田(3 🗉	ΞШ	靯	构	₩ #	愿‡	ם ן ה))			۴ı	現副	副法	₹(1	₽	χĿ	± €	3 🗆	: 虚	世	名业	向個	į)					4	現副	記法	<.		

ğ Г											:			TTA		無水に
	置波高		言十浿	<u> 位置z(c</u>	m), <u>重立</u> :	堤底面 Z:	0		-(/N		計測位	置 z (cm)), 直立堤	≧底面 z =(を回来
2	(cm)	2.0	9.0	17.0	21.0	25.0	33.0	41.5	(1112.12.1	2.0	9.0	17.0 2	21.0 25	5.0 33.(41.5	強度
		$p_{\rm max} 0.12$	9 0.100	0.100	0.101	0.074 (0.031 (0.007	2.96	0.74	0.57 (0.57 0	.58 0.4	42 0.18	0.04	0.32
	17.82	$p_{1/10}$ 0.09	1 0.075	0.077	0.076	0.050 () 600°C	0.006	2.07	0.52	0.43 (0.44 0	.44 0.	28 0.05	0.03	0.23
1		$p_{1/3} 0.07$	0 0.061	0.061	0.061	0.035 (0.006 (0.005	1.62	0.40	0.35 (0.35 0	.35 0.3	20 0.03	0.03	0.18
01-1		$p_{\max} 0.11$	8 0.115	0.118	0.124	0.119 (0.050 (0.008	3.64	0.68 (0.67 (0 69.0	0.72 0.0	69 0.25	0.05	0.40
	17.61	$p_{1/10}$ 0.09	2 0.080	0.081	0.083	0.062 (0.011 (0.005	2.24	0.53 (0.46 (0.47 0	.48 0.	36 0.06	0.03	0.25
		$p_{1/3} 0.06$	8 0.060	0.062	0.064	0.038 (0.006	0.004	1.62	0.40	0.35 (0.36 0	.37 0.3	22 0.03	0.02	0.18
		$p_{\rm max} 0.13$	3 0.132	0.142	0.180	0.176 (0.357 (0.025	6.88	0.70	0.69 (0.75 0	.95 0.9	92 1.87	0.13	0.69
	19.43	$p_{1/10}$ 0.09	9 0.094	0.098	0.106	0.096 (0.055 (0.007	3.11	0.52	0.50 (0.52 0		50 0.29	0.04	0.31
1 16		$p_{1/3}$ 0.07.	5 0.070	0.073	0.075	0.053 (0.019 (0.005	2.03	0.40	0.37 (0.38 0	.40 0.	28 0.10	0.02	0.20
01.1		$p_{\rm max} 0.15$	8 0.148	0.159	0.183	0.316 (0.213 (0.031	7.00	0.82	0.77 (0.83 0	.95 1.0	65 1.11	0.16	0.70
	19.50	$p_{1/10}$ 0.10	3 0.097	0.100	0.100	0.121 (0.045 (0.008	3.21	0.54	0.51 (0.52 0	.52 0.0	63 0.24	0.04	0.32
		$p_{1/3} 0.07$	8 0.071	0.073	0.073	0.061 (0.017	0.005	2.08	0.41	0.37 (0.38 0	0.38 0.	32 0.09	0.03	0.21
		$p_{\rm max} 0.18$	7 0.186	0.212	0.320	0.569 (0.351 (0.158	11.37	0.91	0.91	1.03 1	.56 2.	78 1.72	0.77	1.07
	20.87	$p_{1/10}$ 0.13	1 0.120	0.126	0.145	0.166 (0.084 (0.026	4.47	0.64	0.59 (0.61 0	.71 0.3	81 0.41	0.13	0.42
1 20		$p_{1/3}$ 0.09.	5 0.082	0.085	0.091	0.080 (0.031	0.012	2.62	0.46	0.40 (0.42 0	.45 0.	39 0.15	0.06	0.25
07.1		$p_{\rm max} 0.17$	9 0.186	0.194	0.202	0.287 (0.277	1.067	12.52	0.88 (0.92 (0.96 0	.99 1.4	41 1.36	5.24	1.18
	20.75	$p_{1/10} 0.12$	6 0.116	0.117	0.122	0.141 (0.065 (0.117	4.38	0.62	0.57 (0.57 0	.60 0.0	69 0.32	0.58	0.41
		$P_{1/3}$ 0.09	2 0.080	0.081	0.085	0.071 (0.023 (0.038	2.55	0.45 (0.39 (0.40 0	.42 0.	35 0.11	0.19	0.24
		p_{\max} 0.10	0 0.099	0.099	0.094	0.064 (0.002 (0.001	2.50	0.57	0.56 (0.57 0	.54 0.	37 0.01	0.01	0.27
	17.82	$P_{1/10}$ 0.07.	5 0.071	0.073	0.072	0.045 (0.003 (0.002	1.84	0.43 (0.41 (0.42 0	.41 0.3	26 0.01	0.01	0.20
1		$P_{1/3}$ 0.06	3 0.058	0.059	0.059	0.032 (0.003 (0.002	1.48	0.36	0.33 (0.34 0	.34 0.	18 0.01	0.01	0.16
01.1		$p_{\rm max} 0.15$	4 0.140	0.173	0.181	0.156 (0.260 (0.004	6.29	0.89 (0.81	1.00 1	.05 0.	91 1.50	0.03	0.70
	17.61	$p_{1/10} 0.09$	4 0.088	0.108	0.113	0.091 (0.060 (0.001	3.11	0.54	0.51 (0.63 0	.65 0.	53 0.35	0.00	0.35
		$p_{1/3}$ 0.07	2 0.070	0.083	0.082	0.056 (0.020 (0.001	2.12	0.42	0.40 (0.48 0	.48 0.	33 0.12	0.01	0.23
		p_{\max} 0.12	1 0.113	0.133	0.148	0.176 (0.000 (0.000	3.76	0.63 (0.59 (0.70 0	0.78 0.9	92 0.00	0.00	0.38
	19.43	$P_{1/10}$ 0.08	6 0.083	0.087	0.092	0.070 (0.030 (0.001	2.49	0.45 (0.44 (0.46 0	.48 0.	37 0.16	0.00	0.25
1 16		$P_{1/3}$ 0.06	9 0.066	0.068	0.070	0.043 (0.010 (0.001	1.78	0.36 (0.34 (0.36 0	.37 0.3	23 0.05	0.00	0.18
		$p_{\rm max} 0.13$	8 0.127	0.134	0.142	0.122 (0.123 (000.0	4.50	0.72	0.66 (0.70 0	.74 0.0	64 0.64	0.00	0.45
	19.50	$P_{1/10}$ 0.08	9 0.086	0.087	0.086	0.080 (0.019 (0.001	2.48	0.46	0.45 (0.46 0	.45 0.4	42 0.10	0.01	0.25
		$p_{1/3}$ 0.07	0 0.066	0.067	0.067	0.046 (0.011 (0.001	1.79	0.37	0.34 (0.35 0	.35 0.2	24 0.06	0.01	0.18
		$p_{\max} 0.14$	1 0.151	0.210	0.320	0.471 (0.043 (0.000	7.35	0.69 (0.74	1.03 1	.56 2.	30 0.21	0.00	0.69
	20.87	$p_{1/10}$ 0.11	3 0.109	0.117	0.134	0.138 (0.022 (0.000	3.47	0.55 (0.53 (0.57 0	.65 0.0	67 0.11	0.00	0.33
1 20		$P_{1/3}$ 0.08:	2 0.075	0.079	0.084	0.066 (0.008 (0.001	2.16	0.40	0.37 (0.39 0	.41 0.3	32 0.04	0.01	0.20
1.40		$p_{\rm max} 0.13$	9 0.137	0.155	0.142	0.066 (0.277 (0.000	5.50	0.68 (0.68 (0.76 0	.70 0.	32 1.36	0.00	0.52
	20.75	$p_{1/10}$ 0.10	3 0.097	0.103	0.105	0.090 (0.038 (0.000	2.98	0.51	0.48 (0.50 0	.51 0.4	44 0.18	0.00	0.28
		$P_{1/3}$ 0.07	9 0.073	0.075	0.076	0.053 (0.014 (0.000	2.02	0.39 (0.36 (0.37 0	0.38 0.2	26 0.07	0.00	0.19
1 2 1	21.04	p 0.07	9 0.069	0.071	0.072	0.046 (0.005 (0.005	1.88	0.38 (0.33 (0.35 0	0.35 0.2	22 0.03	0.03	0.18
1	21.20	p 0.08	0 0.071	0.073	0.075	0.048 (0.003 (0.003	1.90	0.38 (0.34 (0.35 0	0.36 0.7	23 0.01	0.01	0.18
1 00	22.24	p 0.11	6 0.101	0.100	0.099	0.079 (0.027 (0.008	2.91	0.53 (0.46 (0.46 0	.45 0.3	36 0.12	0.04	0.26
1.00	21.69	p = 0.10	8 0.096	0.096	0.097	0.069 (0.012	0.027	2.72	0.51	0.45 (0.45 0	.46 0.	32 0.06	0.12	0.25
010	20.26	p = 0.16	1 0.131	0.133	0.137	0.119 (0.173 (0.089	5.34	0.81	0.66 (0.67 0	.69 0.0	60 0.87	0.45	0.52
0/.0	20.30	p = 0.16	8 0.137	0.140	0.153	0.123 (0.173 (0.178	5.93	0.84	0.69 (0.70 0	0.77 0.0	62 0.87	0.89	0.57
0.61	18.33	p 0.20	6 0.159	0.161	0.166	0.161 (0.293 (0.193	7.61	1.14	0.89 (0.89 0	.92 0.	90 1.63	1.08	0.81
10.0	18.33	p 0.20	4 0.159	0.157	0.165	0.148 (0.260 (0.212	7.33	1.14	0.88 (0.87 0	.92 0.3	82 1.45	1.18	0.78
	1.16 1.20 1.20 1.18 1.16 1.16 1.16 1.108 1.31	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left 17.61 \right \left \frac{1}{p_{110}} \right \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left 17.61 \right \right \left \left \frac{1}{2010} \right \left \left \frac{1}{2010} \right \left \frac{1}{2000} \right \frac{1}{2000} \right \frac{1}{2000} \left \frac{1}{2000} \right \frac{1}{2000} \left \frac{1}{2000} $	$ \left 17.61 \right \left \left \left \frac{17.61}{10} \right \left \left \left \frac{10.02}{10} \right \left \left \frac{10.02}{10} \right \left \frac{10.02}{10} \left \frac{10.02}{10} \left \frac{10.02}{10} \right \left \frac{10.02}{10} \right \frac{10.02}{10} \right \frac{10.02}{10} \right \frac{10.02}{10} \left \frac{10.02}{10} \left \frac{10.02}{10} \right \frac{10.02}{10} \left \frac{10.02}{10} \right \frac{10.02}{10} \left \frac{10.02}{10} \right \frac{10.02}{10} \left \frac{10.02}{10} \left \frac{10.02}{10} \left \frac{10.02}{10} \right \frac{10.02}{10} \left \frac{10.02}{10} \left \frac{10.02}{10} \left \frac{10.02}{10} \left \frac{10.02}{10} \left \frac{10.02}{10} \left \frac{10.02}{10} \right \frac{10.02}{10} \left \frac{10.02}{10} \left$