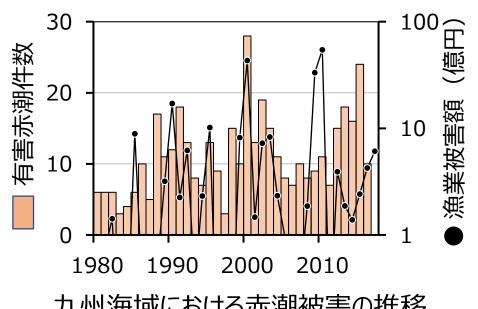
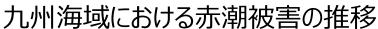
### シャットネラ赤潮によるブリのへい死メカニズム



水産研究·教育機構水産技術研究所 五島庁舎 紫加田 知幸

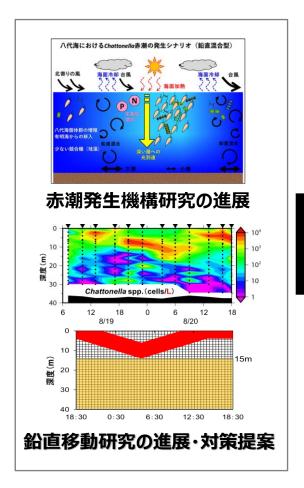

## 魚介類養殖業振興に赤潮対策は必須

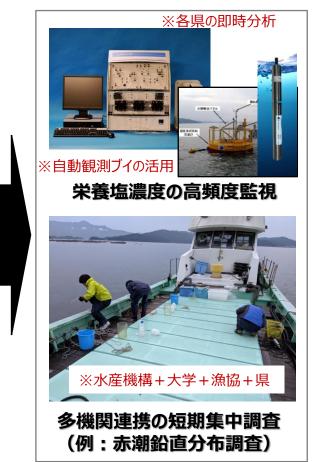

- ・養殖業成長産業化総合戦略の中で養殖生産量の増大が求められた
- ・大規模な赤潮被害が頻発⇒4定\*の崩壊
- ・広がった赤潮を駆除する実用的な方法はない
- ・今後温暖化の影響で赤潮被害の拡大が懸念される



定質・定量・

定時•定価



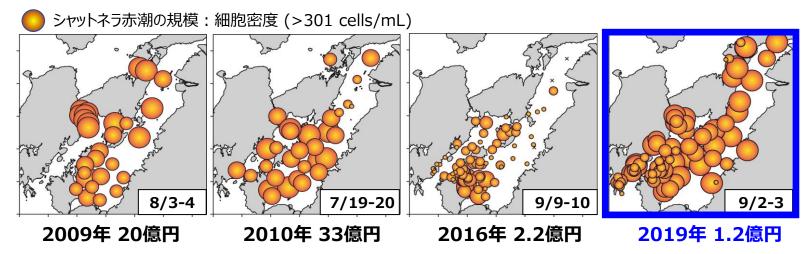






赤潮被害発生現場

#### 赤潮対策は近年急速に高度化している (例:八代海)



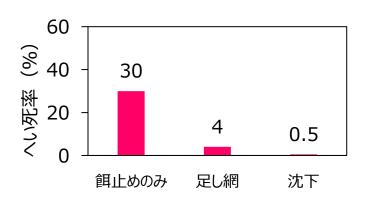





異分野研究者の参画 エビデンスの充実化 モニタリングの充実化 機関間の連携強化 情報共有の リアルタイム化

### 赤潮被害軽減に成功(例:八代海)

#### そして、2019年・・・




- ⇒ 2019年の赤潮の規模: 2009、2010年に匹敵、2016年より大規模
- ⇒ 2019年の被害金額(鹿児島県海域):最少

#### その背景には・・・

|              |       | ı     |              |       |       |       |       |        |       |       |
|--------------|-------|-------|--------------|-------|-------|-------|-------|--------|-------|-------|
| 日付           | 8月20日 | 8月21日 | 8月22日        | 8月23日 | 8月24日 | 8月25日 | 8月26日 | 8月27日  | 8月28日 | 8月29日 |
| 漁場内最大細胞数     | 3     | 9     | 9            | 13    | 50    | 10    | 184   | 302    | 235   | 3     |
| ブリ2歳魚餌止め     |       |       |              |       |       |       |       |        |       |       |
| ブリ当歳魚餌止め     |       |       |              |       |       |       |       |        |       |       |
| 生簀沈下・足し網     |       |       | 設置開始         |       |       |       |       |        |       |       |
| モンモリ・ミョウバン散布 |       |       |              |       |       |       |       | モンモリ+塩 |       |       |
| 被害           |       |       |              |       |       |       |       |        |       |       |
| 日付           | 8月30日 | 8月31日 | 9月1日         | 9月2日  | 9月3日  | 9月4日  | 9月5日  | 9月6日   | 9月7日  | 9月8日  |
| 漁場内最大細胞数     | 98    | 150   | 219          | 1,500 | 1,700 | 120   | 25    | 7      | 4     |       |
| ブリ2歳魚餌止め     |       |       |              |       |       |       |       |        |       |       |
| ブリ当歳魚餌止め     |       |       |              |       |       |       |       |        |       |       |
| 生簀沈下・足し網     |       | 設置完了  |              |       |       |       |       |        |       |       |
| モンモリ・ミョウバン散布 |       |       | モンモリ+焼きミョウバン |       |       |       |       |        |       |       |
| 被害           |       |       |              |       |       |       |       |        |       |       |

計画的な事前対策の実施

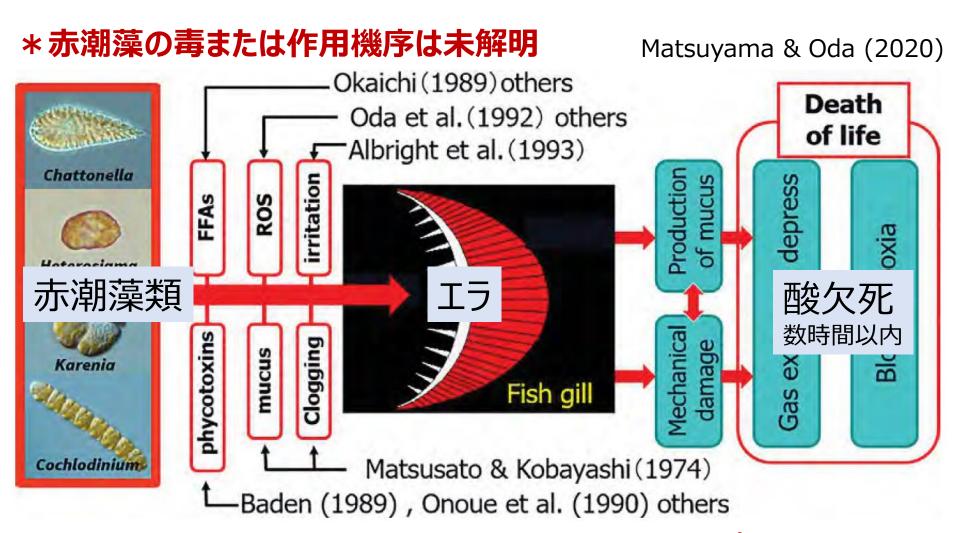


餌止めの徹底と的確な避難

### しかし、課題は山積み

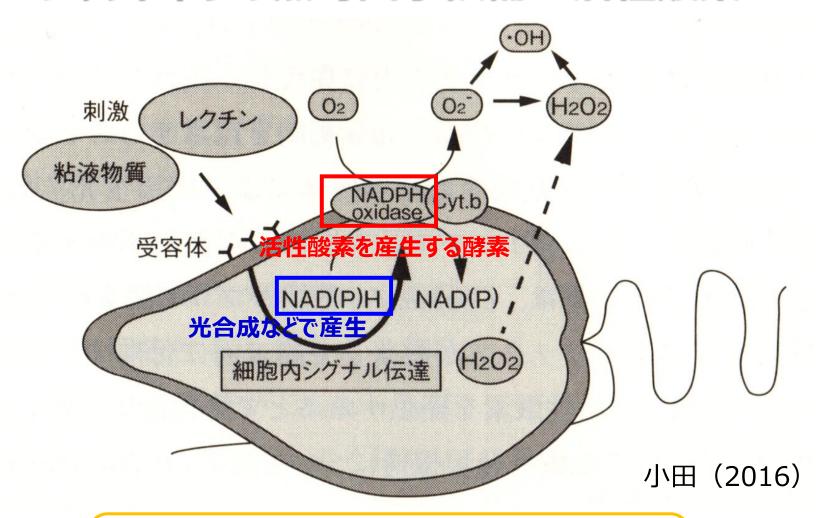
- ➤ モニタリングコストの上昇 + 予算減 ⇒省力化、低コスト化の推進
- 対策は不完全:被害を必ずゼロにできる策はない、発生パターンによっては効果が低下 ⇒異分野との連携強化、エビデンスベースドアプローチの更なる推進
- ➤ 被害額はまだ億単位
  - ⇒既存技術の改良、新規技術の開発

## 重点化すべき赤潮対策技術開発


# 養殖魚を赤潮に強くする

既存技術・餌止め:副作用が大きい。効果に限界あり。

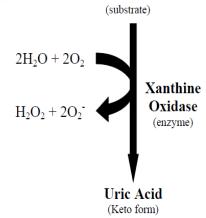
新たなアプローチ:生産技術、サプリメント・薬、育種など


⇒へい死機構の詳細解明が必要

### 赤潮によるへい死メカニズムの概要

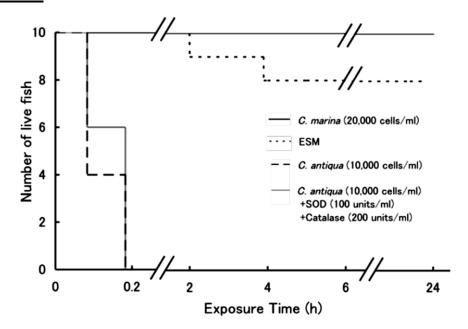


\*酸欠に至るまでのプロセスが未特定


### シャットネラの魚毒因子候補:活性酸素

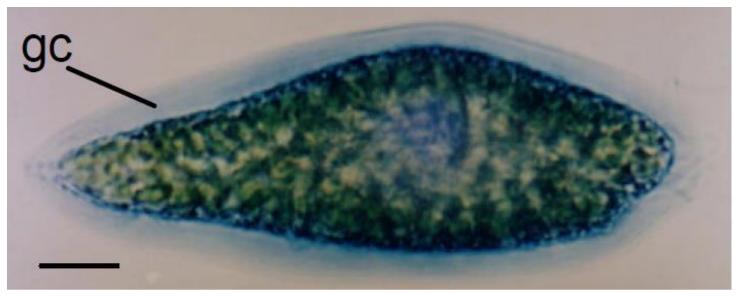


- ✓ 他生物に比べて大量に細胞外に放出
- ✓ 細胞膜で産生


### 活性酸素は魚毒因子なのか?

➤ Marshall et al. (2003) シャットネラと同濃度の人工活性酸素を与えても魚は 死なない。

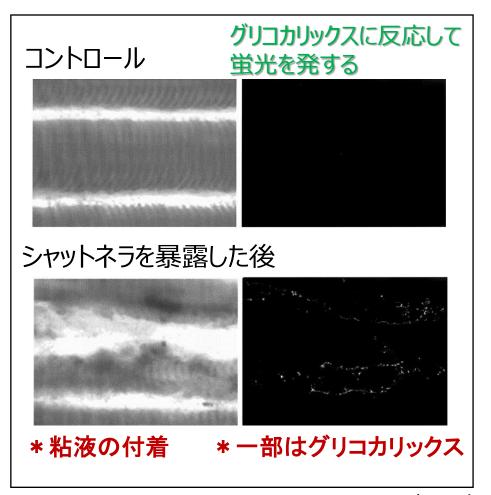


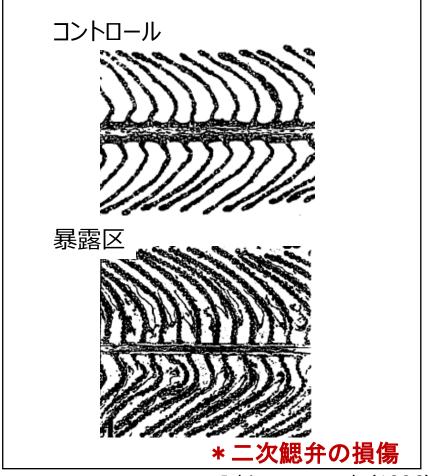

**Xanthine** 

▶ 小田・山口(2013) 酵素で細胞外の活性酸素を消去しても魚は死ぬ。



# シャットネラのグリコカリックス\*


\*細胞表面を被覆する糖タンパク質や多糖類




アルシアンブルー染色; Yokote & Honjo (1985)

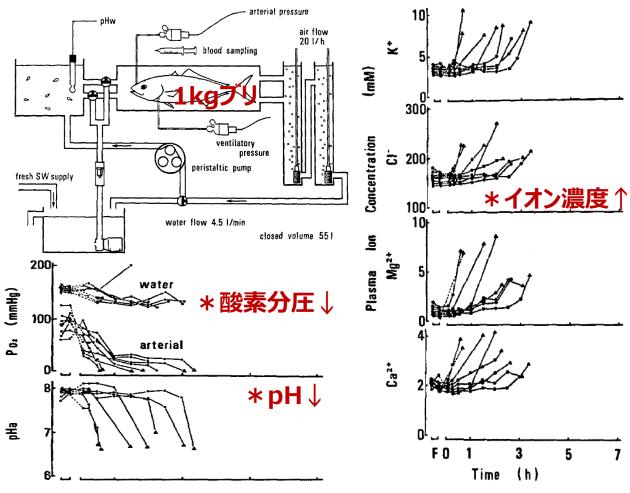
ムコ多糖で構成される外被構造を有する

### グリコカリックスの離脱と付着





Kim et al. (2001)


Ishimatsu et al. (1996)

#### シャットネラから離脱したグリコカリックスが鰓に付着して

損傷や閉塞、鰓の粘液放出を引き起こす?

### シャットネラ暴露による血液パラメータの経時変化

Ishimatsu et al. (1990)



- 低酸素症とアシドーシス⇒酸欠
- (塩類細胞障害による?)浸透圧障害

### 異分野融合の研究チームを編成

組織解析(北里大医) 分析化学的解析 (水產機構·安全管理G)



赤潮藻の生理実験 生化学的解析 (有害G、水大校、埼大)

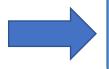


培養株準備・供試魚飼育 マダイ、ブリ暴露試験 (水産機構・五島、有害G)



ディスカッション (全グループ)




毒性·環境計測 船上暴露試験 (有害G、埼大、鹿水技、 大分水研、東町漁協)

現場検証





NGSシーケンス (業者)



バイオインフォマティクス解析 (基生研)



データ解析 (有害G、基生研)

RNA-seq解析、SNP解析

# 本番では成果の一部を紹介します

### へい死機構研究のまとめ

▶ 「魚を赤潮に強くする」技術開発のためにへい死機構研究が必要

シャットネラによるへい死機構について 【既往知見】

- シャットネラは活性酸素を大量放出(魚毒性との関係に証拠なし)
- > 鰓の損傷と閉塞、浸透圧異常⇒酸欠死(プロセスは詳細不明)

#### 【新知見】異分野連携を推進

- ➤ 細胞形態を留めた状態でエラに付着
- ➢ 活性酸素産生レベルと魚毒性間で正の相関
- ▶ 暴露後、エラの炎症関連遺伝子の発現量が上昇
- ブリ家系間でシャットネラ抵抗性に差異







#### 【今後】

- ➤ へい死機構解明 + 赤潮抵抗性の実体解明
- ▶ 赤潮抵抗性家系育種など魚を赤潮に強くする手法の開発